Эпигенетическая регуляция фиброза почек при диабетической нефропатии: в фокусе – модификации гистонов

DOI: https://dx.doi.org/10.18565/nephrology.2018.2.68-76

03.08.2018
182

1 Научно-исследовательский институт молекулярной биологии и медицины при Национальном центре кардиологии и терапии МЗ КР; Бишкек, Киргизия; 2 Кыргызская государственная медицинская академия им. И.К. Ахунбаева; Бишкек, Киргизия; 3 Национальный центр кардиологии и терапии им. акад. Мирсаида Миррахимова при МЗ КР; Бишкек, Киргизия; 4 Центр семейной медицины № 7; Бишкек, Киргизия; 5 ФГБОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова»; Москва, Россия

Одной из наиболее распространенных причин развития терминальной стадии почечной недостаточности является диабетическая нефропатия (ДН). Фиброз почек, характеризующийся накоплением белков внеклеточного матрикса (ВКМ) в клубочковых базальных мембранах и тубулоинтерстиции, служит конечным проявлением ДН. Сигнальный путь TGF-β (Transforming growth factor beta) запускает эпителиально-мезенхимальный переход (ЭMП), который играет ключевую роль в накоплении ВКМ-белков при ДН. В исследованиях показано, что, несмотря на гликемический контроль, ДН продолжает прогрессировать. Это явление получило название «метаболическая память» и означает, что эпигенетические факторы, в частности модификации гистонов, изменяют экспрессию генов фиброза почек и белков ВКМ, индуцированную TGF-β1, а также участвуют в почечном фиброзе благодаря своим свойствам регулировать процесс ЭМП, вызванный сигналами TGF-β. В связи с этим в настоящее время исследователи предпринимают усилия по разработке агентов, влияющих на модификацию гистонов, с целью задержки, остановки или даже обратного развития ДН. В этом обзоре мы изложим результаты самых последних исследований по регулированию гистоновых модификаций, вовлеченных в патогенез ДН.

Введение

В последние годы заболеваемость хронической болезнью почек растет угрожающими темпами. Если эта тенденция сохранится, то не только у бедных, но даже и у богатых стран не хватит ресурсов для адекватного лечения этого заболевания [1]. Хотя почка обладает способностью к регенерации и восстановлению после острого и хронического повреждения, часто патологический процесс приобретает необратимый характер, что приводит к кратковременному почечному коллапсу, требующему диализа или почечной трансплантации [2]. В целом через 10–15 лет после постановки диагноза прогрессирующей нефропатии у 30–40% людей развивается значительная почечная недостаточность [3]. По оценкам, в настоящее время от 1 до 2 млн человек лечат заместительной почечной терапией (ЗПТ) [3–5], причем более 90% этих пациентов живут в развитых странах, т.к. доступность ЗПТ в развивающихся странах ограничена, а в слаборазвитых странах невелика или отсутствует вследствие того, что ЗПТ представляет собой дорогостоящую нагрузку на национальные бюджеты здравоохранения [3].

Одной из основных причин развития почечной недостаточности является диабетическая нефропатия (ДН), которая развивается примерно у 20–40% пациентов с диабетом [6]. Точная причина ДН неизвестна, однако установлено, что ее развитию способствуют высокий уровень глюкозы в крови, дислипидемия, артериальная гипертензия и протеинурия [7]. Все это стимулирует продукцию различных факторов роста/цитокинов и активных форм кислорода (АФК), которые вызывают повреждение подоцитов и воспаление интерстиция. В результате этих событий происходит избыточное осаждение белков внеклеточного матрикса (ВКМ) и развитие гломерулосклероза, что в конечном итоге приводит к дисфункции клубочков и почечной недостаточности [7, 8].

Фиброз почек при ДН характеризуется непрерывным осаждением ВКМ-белков – коллагена, фибронектина и ламинина в мезангиальном матриксе, клубочковых базальных мембранах и тубулоинтерстиции [9]. Известно, что даже после контроля гипергликемии у пациентов с диабетом может продолжаться развитие клубочкового и тубулоинтерстициального фиброза [10]. Эти данные свидетельствуют о том, что эпигенетика может играть существенную роль в патобиологии ДН [11].

Роль фиброза почек при ДН

Избыточное накопление ВКМ-белков является отличительной чертой ДН [9, 12]. Это подтверждается наблюдениями, демонстрирующими осаждение в повышенных количествах коллагенов, фибронектина и ламинина в клубочковой базальной мембране и мезангиальном ВКМ уже на ранних стадиях ДН (микроальбуминурия), что приводит к развитию диабетического диффузного гломерулосклероза [9, 13–15]. На стадиях выраженной нефропатии осаждение коллагенов I и III типов сильно возрастает [16, 17]. Кроме того, продемонстрировано повышение содержания коллагена IV типа в сыворотке и моче на ранних и поздних стадиях ДН [18–20]. Таким образом, накопление белков ВКМ при ДН происходит на протяжении всего процесса почечного фиброза.

TGF-β1 (Transforming growth factor beta), цитокин широкого спектра действия [21, 22], индуцируемый гипергликемией, конечными продуктами усиленного гликозилирования, митоген-активируемой протеинкиназой и протеинкиназой C [23], играет решающую роль в прогрессировании гипертрофии клубочков и избыточном осаждении матричных белков при ДН [24, 25]. Индуцируемое гиперликемией увеличение осаждения матричных белков, приводящее к гломерулосклерозу, связано с повышенной экспрессией и активацией TGF-β1 в клубочковых клетках, подоцитах [26] и мезангиальных клетках [27]. Кроме того, TGF-β1 может также стимулировать действие альфа-актин гладких мышц (α-SMA – α-smooth muscle actin), экспрессию коллагена I типа и гипертрофию клеток [28, 29]. Другой цитокин, фактор роста соединительной ткани CTGF (connective tissue growth factor), также является весьма важным профибротическим фактором роста, участвующим как в TGF-β-зависимых, так и в TGF-β-независимых фибротических процессах [30–32]. Было показано, что профибротическое действие TGF-β1 может быть блокировано антисмысловыми олигонуклеотидами CTGF [33]. Также установлено, что активация CTGF может увеличивать экспрессию фибронектина и коллагенов IV, III и I, а также способствовать осаждению и скоплению белков ВКМ [34, 35].

По сообщениям, активированные миофибробласты – это основные эффекторные клетки при ДН, а их число коррелирует с избыточным осаждением белков ВКМ [36]. Однако точные механизмы их возникновения и активации в фиброзных почках остаются неясными. Исследования P. Galichon и А. Hertig [37] показали, что в процессе почечного фиброза миофибробласты могут возникать из трубчатых эпителиальных клеток через эпителиально-мезенхимальный переход (ЭМП). Обычно принято считать, что трансформация нарушенных трубчатых эпителиальных клеток в мезенхимальные является наиболее вероятным механизмом, связанным с развитием фиброза при ДН [36]. Как in vitro-, так и in vivo-исследования показали, что ЭМП может быть инициирован рядом агентов, стимулирующих процессы, в которых основным участником яв...

Список литературы

1. Xue J.L., Ma J.Z., Louis T.A., Collins A.J. Forecast of the number of patients with end-stage renal disease in the United States to the year 2010. J. Am. Soc. Nephrol. 2001;12:2753–2758.

2. Hewitson T.D. Renal tubulointerstitial fibrosis: Common but never simple. Am. J. Physiol. Renal. Physiol. 2009;296:F1239–1244. Doi:10.1152/ajprenal.90521.2008.

3. Remuzzi G., Benigni A., Remuzzi A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J. Clin. Invest. 2006;116:288–296. Doi: 10.1172/JCI27699.

4. Gagliardini E., Benigni A. Role of anti-TGF-beta antibodies in the treatment of renal injury. Cytokine Growth Factor Rev. 2006;17:89–96.

5. Lysaght M.J. Maintenance dialysis population dynamics: Current trends and long-term implications. J. Am. Soc. Nephrol. 2002;13:S37– S40.

6. Kanwar Y.S., Sun L., Xie P., Sun L., Xie P., Liu F.Y., Chen S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Ann. Rev. Pathol. 2011;6:395–423. Doi:10.1146/annurev.pathol.4.110807.092150.

7. Schena F.P., Gesualdo L. Pathogenetic mechanisms of diabetic nephropathy. J. Am. Soc. Nephrol. 2005;16:S30–S33.PMID:15938030.

8. Wolf G. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur. J. Clin. Invest. 2004;34:785–796. doi:10.1111/j.1365-2362.2004.01429.x.

9. Ban C.R., Twigg S.M. Fibrosis in diabetes complications: pathogenic mechanisms and circulating and urinary markers. Vasc. Health Risk Management. 2008;4:575–596. PMID: 18827908.

10. Villeneuve L.M., Reddy M.A., Natarajan R. Epigenetics: deciphering its role in diabetes and its chronic complications. Clin. Exp. Pharmacol. Physiol. 2011;38:451–459. Doi:10.1111/j.1440-1681.2011.05497.x.

11. Villeneuve L.M., Natarajan R. Epigenetic mechanisms. Contributions to Nephrology. 2011;170:57–65. Doi:10.1159/000324944.

12. Hu C., Sun L., Xiao L., Han Y., Fu X., Xiong X., Kanwar Y.S. Insights into the mechanisms involved in the expression and regulation of extracellular matrix proteins in diabetic nephropathy. Curr. Med. Chem. 2015;22(24):2858–2870.PMCID:PMC4863711.

13. Tsilibary E.C. Microvascular basement membranes in diabetes mellitus. J. Pathol. 2003;200(4):537–546. Doi:https://doi.org/10.1002/path.1439

14. Liu Y., Wang Z., Yin W., Li Q., Cai M., Zhang C., Zu X. Severe insulin resistance and moderate glomerulosclerosis in a minipig model induced by high-fat/high-sucrose/high-cholesteroldiet. Exp. Anim. 2007;56(1):11–20. Doi: https://doi.org/10.1538/expanim.56.11

15. Olgemöller B., Schleicher E. Alterations of glomerular matrix proteins in the pathogenesis of diabetic nephropathy. Сlin. Invest. 1993;71(5):S13–S19. Doi:https://doi.org/10.1007/BF00180071

16. Stokes M.B., Holler S., Cui Y., Hudkins K.L., Eitner F., Fogo A., Alpers C.E. Expression of decorin, biglycan, and collagen type I in human renal fibrosing disease. Kidney Internat. 2000;57(2):487–498. Doi:0.1046/j.1523-1755.2000.00868.x 2-s2.0-0033934431

17. Schaefer L., Raslik I., Gröne H.J., Schönherr E.L.K.E., Macakova K., Ugorcakova J., Kresse H. Small proteoglycans in human diabetic nephropathy: discrepancy between glomerular expression and protein accumulation of decorin, biglycan, lumican, and fibromodulin. The FASEB J. 2001;15(3):559–561. Doi:10.1096/fj.00-0493fje.

18. Matheson A., Willcox M.D., Flanagan J., Walsh B.J. Urinary biomarkers involved in type 2 diabetes: a review. Diabetes/metabolism Res. Rev. 2010;26(3):150–171. Doi:https://doi.org/10.1002/dmrr.1068.

19. Tashiro K., Koyanagi I., Ohara I., Ito T., Saitoh A., Horikoshi S., Tomino Y. Levels of urinary matrix metalloproteinase‐9 (MMP‐9) and renal injuries in patients with type 2 diabetic nephropathy. J. Clin. Lab. Anal. 2004;18:3:206–210. doi:10.1002/jcla.20024.

20. Granier C., Makni K., Molina L., Makni K., Molina L., Jardin-Watelet B., Ayadi H., Jarraya F. Gene and protein markers of diabetic nephropathy. Nephrol. Dial. Transplant. 2008;23:792–799. Doi:10.1093/ndt/gfm834.

21. Hills C.E., Bland R., Bennett J., Ronco P.M., Squires P.E. TGF-β1 mediates glucose-evoked up-regulation of connexin-43 cell-to-cell communication in HCD-cells. Cellular Physiol. Bioch. 2009;24(3–4):177–186. Doi:http://dx.doi.org/10.1159/000233244

22. Böttinger E.P., Bitzer M. TGF-ß signaling in renal disease. J. Am. Soc. Nephrol. 2002;13(10):2600–2610. Doi: 2-s2.0-0036786834 10.1097/01.ASN.0000033611.79556.

23. Hills C.E., Squires P.E. TGF-β1-induced epithelial-to-mesenchymal transition and therapeutic intervention in diabetic nephropathy. Am. J. Nephrol. 2010;31(1):68–74. Doi:10.1159/000256659.

24. Veeneman J.M., De Jong P.E., Huisman R.M., Reijngoud D.J., Nair K.S. Why is muscle protein synthesis, but not whole body protein synthesis, reduced in CRF patients?. Am. J. Physiol.-Endocrinol. Metabolism. 2001;280(1):197–198. Doi:10.1152/ajpendo.2001.280.1.E197.

25. Sharma K., Ziyadeh F.N., Alzahabi B., McGowan T.A., Kapoor S., Kurnik B.R., Weisberg L.S. Increased renal production of transforming growth factor-β1 in patients with type II diabetes. Diabetes. 1997;46(5):854–859. PMID:9133555.

26. Lee H.S. Pathogenic role of TGF-β in the progression of podocyte diseases. Histol. Histopathol. 2011;26(1):107–16. Doi:10.14670/HH-26.107.

27. Lee H.S., Song C.Y. Differential role of mesangial cells and podocytes in TGF-beta-induced mesangial matrix synthesis in chronic glomerular disease. Histology and histopathology. 2009;24(7):901–908. Doi:10.14670/HH-24.901.

28. Dai C., Liu Y. Hepatocyte growth factor antagonizes the profibrotic action of TGF-β1 in mesangial cells by stabilizing Smad transcriptional corepressor TGIF. J. Am. Soc. Nephrol. 2004;15(6):1402–1412. Doi:10.1097/01.ASN.0000130568.53923.FD.

29. Hills C.E., Al-Rasheed N., Al-Rasheed N., Willars G.B., Brunskill N.J. C-peptide reverses TGF-β1-induced changes in renal proximal tubular cells: implications for treatment of diabetic nephropathy. Am. J. Physiol.-Renal. Physiol.2009;296(3):614–621. Doi:10.1152/ajprenal.90500.2008.

30. Tikellis C., Cooper M.E., Twigg S.M., Burns W.C., Tolcos M. Connective tissue growth factor is up-regulated in the diabetic retina: amelioration by angiotensin-converting enzyme inhibition. Endocrinol. 2004;145(2):860–866. Doi:10.1210/en.2003-0967.

31. Roestenberg P., van Nieuwenhoven F.A., Joles J.A., Trischberger C., Martens P.P., Oliver N., Goldschmeding R. Temporal expression profile and distribution pattern indicate a role of connective tissue growth factor (CTGF/CCN-2) in diabetic nephropathy in mice. Am. J.Physiol.-Renal. Physiol. 2006;290(6):1344–1354. Doi:10.1152/ajprenal.00174.2005.

32. Umezono T., Toyoda M., Kato M., Miyauchi M., Kimura M., Maruyama M., Suzuki D. Glomerular expression of CTGF, TGF-beta 1 and type IV collagen in diabetic nephropathy. J. Nephrol. 2006;19(6):751–757. PMID:17173248.

33. Weston B.S., Wahab N.A., Mason R.M. CTGF Mediates TGF-β–Induced Fibronectin Matrix Deposition by Upregulating Active α5β1 Integrin in Human Mesangial Cells. J. Am. Soc. Nephrol. 2003;14(3):601–610. Doi:10.1097/01.ASN.0000051600.53134.B9.

34. Kok H.M., Falke L.L., Goldschmeding R., Nguyen T.Q. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat. Rev. Nephrol. 2014;10(12):700–711. Doi:10.1038/nrneph.2014.184.

35. Tampe D., Zeisberg M. Potential approaches to reverse or repair renal fibrosis. Nature Reviews Nephrology. 2014;10(4):226–237. Doi:10.1038/nrneph.2014.14.

36. Loeffler I., Wolf G. Epithelial-to-mesenchymal transition in diabetic nephropathy: fact or fiction? Cells. 2015;4(4):631–652. Doi:10.3390/cells4040631.

37. Galichon P., Hertig A. Epithelial to mesenchymal transition as a biomarker in renal fibrosis: are we ready for the bedside? Fibrogenesis & tissue repair. 2011;4(1):11. Doi:10.1186/1755-1536-4-11.

38. Fragiadaki M., Mason R.M. Epithelial‐mesenchymal transition in renal fibrosis–evidence for and against. Int. J. Exp. pathol. 2011;92(3):143–150. Doi:10.1111/j.1365-2613.2011.00775.x

39. Zeisberg M., Hanai J. I., Sugimoto H., Mammoto T., Charytan D., Strutz F., & Kalluri R. BMP-7 counteracts TGF-β1–induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 2003;9(7):964–968. Doi:10.1038/nm888.

40. For the Diabetes T.W.T., Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA: J. Am. Med. Association. 2002;287(19):2563. PMCID:PMC2622728.

41. For the Diabetes T.W.T., Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA J. Am. Med. Association. 2003;290(16):2159–2167. Doi:10.1001/jama.290.16.2159.

42. Schernthaner G. Diabetes and cardiovascular disease: is intensive glucose control beneficial or deadly? Lessons from ACCORD, ADVANCE, VADT, UKPDS, PROactive, and NICE-SUGAR. Wiener Medizinische Wochenschrift. 2010;160(1–2):8–19. Doi:10.1007/s10354-010-0748-7.

43. Li S., Reddy M.A., Cai Q., Meng L., Yuan H., Lanting L., Natarajan R. Enhanced proatherogenic responses in macrophages and vascular smooth muscle cells derived from diabetic db/db mice. Diabetes. 2006;55(9):2611–2619. Doi:10.2337/db06-0164.

44. Kowluru R.A., Abbas S.N., Odenbach S. Reversal of hyperglycemia and diabetic nephropathy: effect of reinstitution of good metabolic control on oxidative stress in the kidney of diabetic rats. J. Diab. Complicat. 2004;18(5):282–288. Doi:10.1016/j.jdiacomp.2004.03.002.

45. Hammes H.P., Klinzing I., Wiegand S., Bretzel R.G., Cohen A.M., Federlin K. Islet transplantation inhibits diabetic retinopathy in the sucrose-fed diabetic Cohen rat. Investigative ophthalmology & visual science. 1993;34(6):2092–2096. Doi:http://iovs.arvojournals.org/pdfaccess.ashx?url=/data/journals/iovs/933399/ on 05/02/2018.

46. Waddington C.H. The epigenotype. Int. J. Epidemiol.2011;41(1):10–13. Doi:https://doi.org/10.1093/ije/dyr184.

47. Franks P.W., Nettleton J.A. Invited commentary: gene lifestyle interactions and complex disease traits-inferring cause and effect from observational data, sine qua non. Am. J. Epidemiol.2010;172(9):992–997. Doi:10.1093/aje/kwq280.

48. Wing M.R., Ramezani A., Gill H.S., Devaney J. M., Raj D.S. Epigenetics of progression of chronic kidney disease: fact or fantasy?. Seminars in nephrology. Elsevier. 2013;33:4:363–374. Doi:10.1016/j.semnephrol.2013.05.008.

49. Reddy M.A., Park J.T., Natarajan R. Epigenetic modifications in the pathogenesis of diabetic nephropathy.Seminars in nephrology. Elsevier. 2013;33(4):341–353. doi:10.1016/j.semnephrol.2013.05.006.

50. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705. Doi:10.1016/j.cell.2007.02.005.

51. Bonasio R., Tu S., Reinberg D. Molecular signals of epigenetic states. Science. 2010;330(6004):612–616. Doi:10.1126/science.1191078.

52. Zhou V.W., Goren A., Bernstein B.E. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genetics. 2011;12(1):7–18. Doi:10.1038/nrg2905.

53. Villeneuve L.M., Natarajan R. The role of epigenetics in the pathology of diabetic complications. Am. J. Physiol.-Renal Physiol. 2010;299(1):F14–F25. Doi:10.1152/ajprenal.00200.2010.

54. Murr R. Interplay between different epigenetic modifications and mechanisms. Advances in genetics. Acad. Press. 2010;70:101–141. Doi:10.1016/B978-0-12-380866-0.60005-8.

55. Reddy M.A., Natarajan R. Epigenetics in diabetic kidney disease. Journal of the Am. Soc. Nephrol. 2011;22(12):2182–2185. Doi:10.1681/ASN.2011060629.

56. Yang X.J., Seto E.Y. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene. 2007;26(37):5310–5318. Doi:10.1038/sj.onc.1210599.

57. De Ruijter A.J.M., Van Gennip A.H., Caron H.N., Kemp S., Van Kuilenburg A.B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 2003;370(3):737–749. Doi:10.1042/BJ20021321.

58. Jørgensen S., Schotta G., Sørensen C.S. Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Nucl. Acids Res. 2013;41(5):2797–2806. Doi:10.1093/nar/gkt012.

59. Sun G., Cui W.P., Guo Q.Y., Miao L.N. Histone lysine methylation in diabetic nephropathy. J. Diab. Res. 2014;2014:6541–6548. Doi:10.1155/2014/654148.

60. Wegner M., Neddermann D., Piorunska-Stolzmann M., Jagodzinski P.P. Role of epigenetic mechanisms in the development of chronic complications of diabetes. Diabetes research and clinical practice. 2014;105(2):164–175. Doi:10.1016/j.diabres.2014.03.019.

61. Tonna S., El-Osta A., Cooper M.E., Tikellis C. Metabolic memory and diabetic nephropathy: potential role for epigenetic mechanisms. Nat. Rev. Nephrol. 2010;6:6:332–341. Doi:10.1038/nrneph.2010.55.

62. Thomas M.C. Epigenetic mechanisms in diabetic kidney disease. Curr. Diab. Rep. 2016;16:31. Doi:10.1007/s11892-016-0723-9.

63. Ling C., Groop L. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes. 2009;58(12):2718–2725. Doi:10.2337/db09-1003.

64. Chakrabarti S.K., Francis J., Ziesmann S.M., Garmey J.C., Mirmira R.G. Covalent histone modifications underlie the developmental regulation of insulin gene transcription in pancreatic β cells. J. Biol. Chem. 2003;278(26):23617–23623. Doi:10.1074/jbc.M303423200.

65. Reddy M.A., Natarajan R. EpigeneticD:10.1093/cvr/cvr024.

66. Miao F., Gonzalo I.G., Lanting L., Natarajan R. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J. Biol. Chem. 2004;279(17):18091–18097. Doi:10.1074/jbc.M311786200.

67. Yuan H., Reddy M.A., Sun G., Lanting L., Wang M., Kato M., Natarajan R. Involvement of p300/CBP and epigenetic histone acetylation in TGF-β1-mediated gene transcription in mesangial cells. Am. J. Physiol.-Renal Physiol. 2012;304(5):F601–F613. Doi:10.1152/ajprenal.00523.2012.

68. Sun G., Reddy M.A., Yuan H., Lanting L., Kato M., Natarajan R. Epigenetic histone methylation modulates fibrotic gene expression. J. Am. Soc. Nephrol. 2010;ASN. 2010060633. Doi:10.1681/ASN.2010060633.

69. Wang Y., Luo M., Wu H., Kong L., Xin Y., Miao L. Novel curcumin analog C66 prevents diabetic nephropathy via JNK pathway with the involvement of p300/CBP-mediated histone acetylation. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2015;1852(1):34–46. Doi:10.1016/j.bbadis.2014.11.006.

70. Kolset S.O., Reinholt F.P., Jenssen T. Diabetic nephropathy and extracellular matrix. J. Histochem. Cytochem. 2012;60(12):976–986. Doi:10.1369/0022155412465073.

71. Brosius F.C. New insights into the mechanisms of fibrosis and sclerosis in diabetic nephropathy. Rev. Endocrine Metabolic Disorders. 2008;9(4):245–254. Doi: 10.1007/s11154-008-9100-6.

72. Diamond-Stanic M.K., You Y.H., Sharma K. Sugar, sex, and TGF-β in diabetic nephropathy. Seminars in nephrology. Elsevier. 2012;32(3):261–268. Doi:10.1016/j.semnephrol.2012.04.005.

73. Ghosh A.K., Bhattacharyya S., Lafyatis R., Farina G., Yu J., Thimmapaya B., Varga J. p300 is elevated in systemic sclerosis and its expression is positively regulated by TGF-β: epigenetic feed-forward amplification of fibrosis. J. Investig. Dermatol. 2013;133(5):1302–1310. Doi:10.1038/jid.2012.479.

74. Kanamaru Y., Nakao A., Tanaka Y., Inagaki Y., Ushio H., Shirato I., ... & Tomino Y. Involvement of p300 in TGF-β/Smad-Pathway-Mediated α2 (I) Collagen Expression in Mouse Mesangial Cells. Nephron Exp. Nephrol. 2003;95(1):e36–e42.

75. Fang M., Kong X., Li P., Fang F., Wu X., Bai H., Xu Y. RFXB and its splice variant RFXBSV mediate the antagonism between IFNγ and TGFβ on COL1A2 transcription in vascular smooth muscle cells. Nucl. Ac. Res. 2009;37(13):4393–4406. Doi:10.1093/nar/gkp398.

76. Xu H., Wu X., Qin H., Tian W., Chen J., Sun L., Xu Y. Myocardin-related transcription factor A epigenetically regulates renal fibrosis in diabetic nephropathy. Journal of the Am. Soc. Nephrol. 2015;26(7):1648–1660. Doi:10.1681/ASN.2014070678.

77. Yuan H., Reddy M.A., Deshpande S., Jia Y., Park J.T., Lanting L.L., Natarajan R. Epigenetic histone modifications involved in profibrotic gene regulation by 12/15-lipoxygenase and its oxidized lipid products in diabetic nephropathy. Antiox. Redox. Signal. 2016;24(7):361–375. Doi:10.1089/ars.2015.6372.

78. Lee H.B., Noh H., Seo J.Y., Yu M.R., Ha H. Histone deacetylase inhibitors: a novel class of therapeutic agents in diabetic nephropathy. Kidney Intern. 2007;72:S61–S66. Doi:10.1038/sj.ki.5002388.

79. Wang X., Liu J., Zhen J., Zhang C., Wan Q., Liu G., Xu H. Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy. Kidney Intern. 2014;86(4):712–725.

80. Yoshikawa M., Hishikawa K., Marumo T., & Fujita T. Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-β1 in human renal epithelial cells. J. Am. Soc. Nephrol. 2007;18(1):58–65. Doi:10.1681/ASN.2005111187.

81. Pang M., Kothapally J., Mao H., Tolbert E., Ponnusamy M., Chin Y.E., & Zhuang S. Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy. Am. J. Physiol.-Renal Physiol. 2009;297(4):F996–F1005. Doi:10.1152/ajprenal.00282.2009.

82. Noh H., Oh E.Y., Seo J.Y., Yu M.R., Kim Y.O., Ha H., Lee H.B. Histone deacetylase-2 is a key regulator of diabetes-and transforming growth factor-β1-induced renal injury. Am. J. Physiol.-Renal Physiol. 2009;297(3):F729–F739. Doi:10.1152/ajprenal.00086.2009.

83. Liu N., He S., Ma L., Ponnusamy M., Tang J., Tolbert E., Zhuang S. Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-beta and EGFR signaling. PloSOne. 2013;8(1):e54001. Doi:10.1371/journal.pone.0054001.

84. McDonald O.G., Wu H., Timp W., Doi A., Feinberg A.P. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat. Struct. Mol. Biol. 2011;18(8):867–874. Doi:10.1038/nsmb.2084.

85. Chen S., Feng B., George B., Chakrabarti R., Chen M., Chakrabarti S. Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. Am. J. Physiol.-Endocrinol. Metabol. 2009;298(1):E127–E137. Doi:https://doi.org/10.1152/ajpendo.00432.2009

86. Yun J.M., Jialal I., Devaraj S. Epigenetic regulation of high glucose-induced proinflammatory cytokine production in monocytes by curcumin. J. Nutrit. Biochem. 2011;22(5):450–458. Doi:https://doi.org/10.1016/j.jnutbio.2010.03.014

87. Ma J., Phillips L., Wang Y., Dai T., LaPage J., Natarajan R., Adler S.G. Curcumin activates the p38MPAK-HSP25 pathway in vitro but fails to attenuate diabetic nephropathy in DBA2J mice despite urinary clearance documented by HPLC.BMC complementary and alternative medicine. 2010;10(1):67. Doi:https://doi.org/10.1186/1472-6882-10-67

88. Khan S., Jena G., Tikoo K. Sodium valproate ameliorates diabetes-induced fibrosis and renal damage by the inhibition of histone deacetylases in diabetic rat. Exp. Molec. Pathol. 2015;98(2):230–239. Doi:https://doi.org/10.1016/j.yexmp.2015.01.003

89. Qi H., Jing Z., Xiaolin W., Changwu X., Xiaorong H., Jian Y., Hong J. Histone demethylase JMJD2A inhibition attenuates neointimal hyperplasia in the carotid arteries of balloon-injured diabetic rats via transcriptional silencing: inflammatory gene expression in vascular smooth muscle cells. Cell. Physiol. Biochem. 2015;37(2):719–734. Doi:https://doi.org/10.1159/000430390

Об авторах / Для корреспонденции

Айтбаев К.А. – д.м.н., профессор, заведующий лабораторией патологической физиологии НИИ молекулярной биологии и медицины при НЦКТ МЗ КР; Бишкек, Киргизия
Муркамилов И.Т. – к.м.н., врач-нефролог I квалификационной категории, ассистент кафедры факультетской терапии КГМА им. И.К. Ахунбаева; Бишкек, Киргизия. E-mail: murkamilov.i@mail.ru
Фомин В.В. – д.м.н., профессор, заведующий кафедрой факультетской терапии № 1, ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» МЗ РФ; Москва, Россия.
Ж.А. Муркамилова – врач-нефролог Центра семейной медицины № 7; Бишкек, Киргизия

Полный текст публикаций доступен только подписчикам

Нет комментариев

Комментариев: 0

Вы не можете оставлять комментарии
Пожалуйста, авторизуйтесь