Метафилактика мочекаменной болезни. Часть 2. Факторы роста заболеваемости МКБ. Современный взгляд на механизмы камнеобразования (продолжение)

DOI: https://dx.doi.org/10.18565/urology.2018.6.131-138

31.12.2018
260

ФГАОУ ВО «Первый МГМУ им. И. М. Сеченова» Сеченовский Университет; Москва, Россия

Мочекаменная болезнь – одно из наиболее активно прогрессирующих заболеваний, являющихся болезнью обмена веществ на фоне воздействия генетических, экологических факторов и образа жизни.
В статье представлены современные взгляды на факторы инициации образования камней и теории камнеобразования. Обсуждены факторы, играющие важную роль в активации и ингибировании процессов нуклеации и агрегации камнеобразующих веществ. Все теории камнеобразования объединены основным условием – наличием пересыщения мочи камнеобразующими минералами. Описаны микроэлементы, участвующие в формировании мочевых камней, наиболее часто встречающиеся метаболические нарушения и их роль в камнеобразовании.

Начальной стадией кристаллизации микроэлементов, находящихся в растворе, является процесс нуклеации, первой стадией фазового перехода, при которой образуются устойчиво растущие зародыши новой стабильной фазы из исходной метастабильной фазы (пресыщенных пар). Следующей за стадией нуклеации является стадия коллапса, на которой происходит дальнейший рост зародышей новой фазы при практически неизменном их количестве. Нуклеация бывает двух типов: гомогенной, требующей высокой степени пресыщения минералами, и гетерогенной, которая может реализовываться в присутствии частиц, состоящих из белков, других органических полимеров или кристаллов других минералов, и проходит на поверхностях, выстланных химически активными клеточными структурами [1]. В отличие от гомогенной нуклеации для инициации кристаллов путем гетерогенной нуклеации требуются более низкие уровни пересыщения. Гетерогенная нуклеация – наиболее вероятный механизм, посредством которого в моче происходит инициирование формирования кристалла [2]. Как уже было указано, в основном рост камня происходит на основе агрегирования кристаллов, на бляшке Рендала, внутриканальцевых кристаллических скоплениях или ранее образовавшемся камне во время эпизодов кристаллурии. Рост кристаллов биогенных, природных и синтетических материалов может регулироваться действием модификаторов, чаще всего ингибиторов, размер которых варьируется от небольших ионов и молекул до больших макромолекул. Ингибиторы адсорбируются на поверхности кристаллов и препятствуют присоединению растворенного вещества, тем самым снижая скорость роста кристалла. Мочевые кристаллы в моче, как и в любой биологической жидкости, всегда покрыты мочевыми макромолекулами, которые продуцируют эпителиальные клетки канальцев почек в ответ на их контакт с кристаллическими депозитами. Макромолекулы в свою очередь состоят из большой группы белков и гликозаминогликанов (ингибиторов камнеобразования) [3, 4]. Роль этих белков в образовании камней полностью не ясна. Тем не менее покрытие кристаллов мочевыми макромолекулами направлено на предотвращение или по крайней мере на продление длительности агрегации, склеивания кристаллов, на время прохождения мочи по внутрипочечным мочевым путям [5]. Увеличение диуреза, а следовательно, скорости прохождения мочи по мочевым путям у пациентов с МКБ показало обратную зависимость между объемом мочи и интенсивностью агглютинации [6]. По мнению других исследователей, некоторые из макромолекул, напротив, способствуют дальнейшей кристаллизации и росту камней. Некоторые модификаторы замедляют скорость роста и/или агломерации кристаллов кальциевых солей in vitro. К этим модификаторам относятся магний, цитрат [7, 8], АДФ, АТФ [9], фосфопептиды [10], различные гликозаминогликаны [11, 12], неполимеризированный белок Тамма–Хорсфалла (также известный как уромодулин) [13, 14], нефрокальцин [15, 16], остеопонтин [17, 18], кальгранулин [19], α1-микроглобулин [20], β2-микроглобулин [21], МПТФ1 [22, 23] и интер-α-ингибитор (легкая цепь бикунина) [24, 25]. С другой стороны, выделена группа модификаторов, стимулирующих кристаллизацию солей кальция: матриксная субстанция А [26], различные неохарактеризованные белки и гликопротеины мочи [27–29], а также полимеризованная форма белка Тамма–Хорсфалла (уромукоид) [30–32]. Мочевые концентрации этих ингибиторов часто очень низкие. Они действуют путем адсорбции на поверхности кристаллов. Их фиксация на кристаллах приводит к ухудшению электрических взаимодействий между атомами на поверхности кристалла и ионов в растворе, что ведет к торможению роста и агрегации кристаллов. В целом взаимодействие ингибиторов и промоутеров во многом зависит от их относительной взаимной концентрации, особенно в отношении катионов и анионов с низким молекулярным весом. Большая работа была проведена для оценки влияния веществ на процессы кристаллизации, особенно кальция оксалата (СаOx) как основного строительного материала мочевых камней [33, 34]. Однако полученные результаты оказались спорными, а влияние на предотвращение роста камня минимальным [35, 36]. Агрегация кристаллов включает явления электростатического притяжения в зависимости от заряда поверхности кристаллов. Агрегация и агглютинация кристаллов, как правило, обусловлены притяжением частиц силами Ван-дер-Ваальса, эффективных только на очень малых расстояниях [37]. Поверхностный заряд кристаллов CaOx электроотрицательный, одинаково заряженные частицы взаимно отталкиваются, препятствуя их агглютинации. Электроотрицательные потенциалы кристаллов способны противодействовать силам Ван-дер-Ваальса в процессе агглютинации. Однако при высокой концентрации камнеобразующих веществ в моче их кристаллы могут быстро объединяться, формируя конкремент [38]. Сложное взаимодействие между макромолекулами и кристаллами зависит от нескольких факторов: рН, ионной силы, концентрации ингибиторов с низким молекулярным весом, таких как цитрат; концентрации промоутеров, таких как кальций, и электролитов, особенно натрия, всех факторов, которые мог...

Список литературы

1. Landau L.D., Lifshits E.M. A statistical physics. M.: Nauka, 1964. Russian (Ландау Л.Д., Лифшиц Е.М. Статистическая физика. М.: Наука, 1964).

2. Finlayson B., Reid F. The expectation of free and fixed particles in urinary stone disease. Invest. Urol. 1978;15:442–448.

3. Khan S.R., Finlayson B., Hackett R.L. Stone matrix as proteins adsorbed on crystal surfaces: a microscopic study. Scan Electron Microsc 1983;379–385. doi:10.1007/s00240-013-0604-5.

4. Khan S.R., Kok D.J. Modulators of urinary stone formation. Front Biosci. 2004;9:1450–1482.

5. Baumann J.M., Affolter B., Casella R. Aggregation of freshly precipitated calcium oxalate crystals in urine of calcium stone patients and controls. Urol Res. 2011;6:421–427. Doi:10.1007/s00240-011-0382-x.

6. Guerra A., Allegri F., Meschi T., Adorni G., Prati B., Nouvenne A., Novarini A., Maggiore U., Fiaccadori E., Borghi L. Effects of urine dilution on quantity, size and aggregation of calcium oxalate crystals induced in vitro by an oxalate load. ClinChem Lab Med. 2005;43:585–589.

7. Borden T.A., Lyon E.S. The effects of magnesium and pH on experimental calcium oxalate stone disease. Invest. Urol. 1969;6:412–422.

8. Meyer J.L., Smith L.H. Growth of calcium oxalate crystals. II. Inhibition by natural urinary crystal growth inhibitors. Invest. Urol. 1975;13:36–39.

9. Fleisch H., Bisaz S. The inhibitory effect of pyrophosphate on calcium oxalate precipitation and its relation to urolithiasis. Experientia. 1964;20:266–277.

10. Fleisch H., Bisaz S. Isolation from urine of pyrophosphate, a calcification inhibitor. Am. J. Physiol. 1962;203:671–675.

11. Meyer J.L., McCall J.T., Smith L.H. Inhibition of calcium phosphate crystallization by nucleoside phosphates. Calcif. Tissue Res. 1975;15:287–293.

12. Howard J.E., Thomas W.C., Barker L.M., Smith L.H., Wadkins C.L. The recognition and isolation from urine and serum of a peptide inhibitor to calcification. Johns Hopkins Med. J. 1967;120:119–136.

13. Robertson W.G., Peacock M., Nordin B.E. Inhibitors of the growth and aggregation of calcium oxalate crystals in vitro. Clin. Chim. Acta. 1973;43:31–37.

14. Ryall R.L., Harnett R.M., Marshall V.R. The effect of urine, pyrophosphate, citrate, magnesium and glycosaminoglycans on the growth and aggregation of calcium oxalate crystals in vitro. Clin. Chim. Acta. 1981;112:349–356.

15. Robertson W.G., Scurr D.S., Bridge C.M. Factors influencing the crystallisation of calcium oxalate in urine – critique. J. Cryst. Growth. 1981;53:182–194.

16. Worcester E.M., Nakagawa Y., Coe F.L. Glycoprotein calcium oxalate crystal growth inhibitor in urine. Miner. Electrolyte Metab. 1987;13:267–272.

17. Nakagawa Y., Ahmed M., Hall S.L., Deganello S., Coe F.L. Isolation from human calcium oxalate renal stones of nephrocalcin, a glycoprotein inhibitor of calcium oxalate crystal growth. Evidence that nephrocalcin from patients with calcium oxalate nephrolithiasis is deficient in gamma-carboxyglutamic acid. J. Clin. Invest. 1987;79:1782–1787.

18. Hess B., Nakagawa Y., Coe, F.L. Inhibition of calcium oxalate monohydrate crystal aggregation by urine proteins. Am. J. Physiol. 1989;257:F99–F106.

19. Shiraga H. et al. Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. Proc. Natl Acad. Sci. USA. 1992;89:426–430.

20. Tsuji H. et al. Urinary concentration of osteopontin and association with urinary supersaturation and crystal formation. Int. J. Urol. 2007;14:630–634.

21. Pillay S.N., Asplin J.R., Coe F.L. Evidence that calgranulin is produced by kidney cells and is an inhibitor of calcium oxalate crystallization. Am. J. Physiol. 1998;275:F255–F261.

22. Morse R.M., Resnick M.I. A new approach to the study of urinary macromolecules as a participant in calcium oxalate crystallization. J. Urol. 1988;139:869–873.

23. Dussol B., et al. Analysis of the soluble organic matrix of five morphologically different kidney stones. Evidence for a specific role of albumin in the constitution of the stone protein matrix. Urol. Res. 1995;23:45–51.

24. Stapleton A.M., et al. Further evidence linking urolithiasis and blood coagulation: urinary prothrombin fragment 1 is present in stone matrix. Kidney Int. 1996;49:880–888.

25. Grover P.K., Ryall R.L. Inhibition of calcium oxalate crystal growth and aggregation by prothrombin and its fragments in vitro: relationship between protein structure and inhibitory activity. Eur. J. Biochem. 1999;263:50–56.

26. Evan A.P. et al. Renal inter-α-trypsin inhibitor heavy chain 3 increases in calcium oxalate stone-forming patients. Kidney Int. 2007;72:1503–1511.

27. Dawson C.J., Grover P.K., Ryall R.L. Inter-alpha-inhibitor in urine and calcium oxalate urinary crystals. Br. J. Urol. 1998;81:20–26.

28. Morse R.M., Resnick M.I. A new approach to the study of urinary macromolecules as a participant in calcium oxalate crystallization. J. Urol. 1988;139:869–873.

29. Spector A.R., Gray A., Prien E.L. Kidney stone matrix. Differences in acidic protein composition. Invest. Urol. 1976;13:387–389.

30. Lian J.B., Prien E.L., Glimcher M.J., Gallop P.M. The presence of protein-bound gamma-carboxyglutamic acid in calcium-containing renal calculi. J. Clin. Invest. 1977;59:1151–1157.

31. Jones W.T., Resnick M.I. The characterization of soluble matrix proteins in selected human renal calculi using two-dimensional polyacrylamide gel electrophoresis. J. Urol. 1990;144:1010–1014.

32. Rose G.A., Sulaiman S. Tamm–Horsfall mucoproteins promote calcium oxalate crystal formation in urine: quantitative studies. J. Urol. 1982;127:177–179.

33. Robertson W.G., Scurr D.S. Modifiers of calcium oxalate crystallization found in urine. I. Studies with a continuous crystallizer using an artificial urine. J. Urol. 1986;135:1322–1326.

34. Grover P.K., Ryall R.L., Marshall V.R. Does Tamm–Horsfall mucoprotein inhibit or promote calcium oxalate crystallization in human urine? Clin. Chim. Acta. 1990;190:223–238.

35. Konstantinova O.V. The metabolic differences in non-recurrent and recurrent urolithiasis. Urologiia. 1999;5:8–9. Russian (Константинова О.В. Метаболические различия нерецидивного и рецидивного уролитиаза. Урология. 1999;5:8–9).

36. Golovanov S.A. Clinico-biochemical and physico-chemical criteria of development and prosnosis of urinary stone disease. Diss. d-ra med. nauk. M., 2003. Russian (Голованов С.А., Клинико-биохимические и физико-химические критерии течения и прогноза мочекаменной болезни. Дисс. докт. мед. наук. М., 2003).

37. Khan R., Kok D.J. Modulators of urinary stone formation. Frontiers in Bioscience. 2004;9:1450–1482.

38. Ryall R.L. Macromolecules and urolithiasis: parallels and paradoxes. Nephron-Physiology. 2004;98(2):37–42.

39. Müller R.H. Zetapotential und Partikelladung in der Labor-praxis. Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1996. Р. 37.

40. Baumann J.M., Affolter B., Caprez U., Clivaz C., von Arx U. Role of calcium in the aggregation of particles coated by urinary macromolecules. Urol Int. 2009;82:459–463.

41. Asplin J.R. Uric acid stones. Semin Nephrol. 1996;16:412–424.

42. Taylor E.N., Stampfer M.J., Curhan G.C. Obesity, weight gain, and the risk of kidney stones. JAMA 2005;293:455–462.

43. Berg C., Tiselius H.G. The effect of pH on the risk of calcium oxalate crystallization in urine. Eur. Urol. 1986;12:59–61.

44. Hojgaard I., Fornander A.M., Nilsson M.A., Tiselius H.G. The influence of hydroxyapatite seed on the crystallization induced by volume reduction of solutions with an ion composition corresponding to that in the distal tubule at different pH levels. Scand. J. Urol. Nephrol. 1998;32:311–319. Doi:10.1080/003655998750015250.

45. Hojgaard I., Fornander A.M., Nilsson M.A., Tiselius H.G. The effect of pH changes on the crystallization of calcium salts in solutions with an ion composition corresponding to that in the distal tubule. Urol. Res.1999;27:409–416. Doi:10.1007/s002400050129.

46. Hojgaard I., Tiselius H.G. Crystallization in the nephron. Urol. Res.1999;27:397–403. Doi:10.1007/s002400050127.

47. Wagner C.A., Mohebbi N. Urinary pH and stone formation. J Nephrol. 2010;23(Suppl 16):S165–S169.

48. Manissorn J., Fong-Ngern K., Peerapen P., Thongboonkerd V. Systematic evaluation for effects of urine pH on calcium oxalate crystallization, crystal-cell adhesion and internalization into renal tubular cells. Sci Rep 2017;7(1):1798. Doi: 10.1038/s41598-017-01953.

49. Worcester E.M., Coe F.L. Nephrolithiasis. Prim. Care. 2008;35:369–391. Doi:10.1016/j.pop.2008.01.005, vii.

50. McKay C.P. Renal stone disease. Pediatr. Rev. 2010;31:179–188, Doi:10.1542/pir.31-5-179.

51. Lieske J.C., Swift H., Martin T., Patterson B., Toback F.G. Renal epithelial cells rapidly bind and internalize calcium oxalate monohydrate crystals. Proc Natl Acad Sci USA. 1994;91:6987–6991. Doi:10.1073/pnas.91.15.6987.

52. Kanlaya R., Sintiprungrat K., Chaiyarit S., Thongboonkerd V. Macropinocytosis is the major mechanism for endocytosis of calcium oxalate crystals into renal tubular cells. Cell Biochem. Biophys. 2013;67:1171–1179. Doi:10.1007/s12013-013-9630-8.

53. Chaiyarit S., Singhto N., Thongboonkerd V. Calcium oxalate monohydrate crystals internalized into renal tubular cells are degraded and dissolved by endolysosomes. Chem. Biol. Interact. 2016;246:30–35. Doi:10.1016/j.cbi.2015.12.018.

54. Wiessner J.H., Hasegawa A.T., Hung L.Y., Mandel G.S., Mandel N.S. Mechanisms of calcium oxalate crystal attachment to injured renal collecting duct cells. Kidney Int. 2001;59:637–644. doi:10.1046/j.1523-1755.2001.059002637.x.

55. Pak C.Y., et al. Physicochemical metabolic characteristics for calcium oxalate stone formation in patients with gouty diathesis. J Urol. 2005;173(5):1606–1609.

56. Pak C.Y., et al. Biochemical distinction between hyperuricosuric calcium urolithiasis and gouty diathesis. Urology. 2002;60(5):789–794.

57. Pak C.Y., et al. Biochemical profile of idiopathic uric acid nephrolithiasis. Kidney Int. 2001;60(2):757–761.

58. Sakhaee K., et al. Pathophysiologic basis for normouricosuric uric acid nephrolithiasis. Kidney Int. 2002;62(3):971–979.

59. Robertson, W.G., тPeacock M., Nordin B.E. Calcium oxalate crystalluria and urine saturation in recurrent renal stone-formers. Clin. Sci. 1971;40:365–374.

60. Darenkov A.F., Chudnovskaya, Popovkin N.N., Yanenko E.K., Konstantinova O.V.Biochemical studies in patients with urinary stone disease. Metodicheskie rekomendacii M., MZ RF, NII urologii, 1994. p. 7. Russian (Даренков А.Ф.,Чудновская М.В., Поповкин Н.Н., Яненко Э.К. Константинова О.В. биохимические исследования у больных мочекаменной болезнью. Методические рекомендации М., МЗ РФ, НИИ урологии, 1994. C. 7).

61. Robertson W.G. Factors affecting the precipitation of calcium phosphate in vitro. Calcif. Tissue Res. 1973;11:311–322.

62. Baumann J.M., Affolter B. From crystalluria to kidney stones, some physicochemical aspects of calcium nephrolithiasis. World J Nephrol. 2014,3(4):256–267. Doi:10.5527/wjn.v3.i4.256.

63. Robertson W.G. Potential role of fluctuations in the composition of renal tubular fluid through the nephron in the initiation of Randall’s plugs and calcium oxalate crystalluria in a computer model of renal function. Urolithiasis. 2015;43(Suppl. 1):93–107.

64. Asplin, J.R., Mandel N.S., Coe F.L. Evidence of calcium phosphate supersaturation in the loop of Henle. Am. J. Physiol. 1996;270:F604–F613.

65. Kidney stones Nature Reviews Disease Primers 2, Article number: 16008. 2016. Doi:10.1038/nrdp.2016.8.

66. Popovkin N.N. Chudnovskaya M.V., Konstantinova O.V. A compatibility of metabolic disturbances in urinary stone disease. A collection of scientific papers. “"Current issues of urology and operative nephrology”. 70 let urologicheskoi klinike RGMU, 1924–1994. М., 1994. Р. 24–32. Russian (Поповки Н.Н., Чудновская М.В., константинова О.В. Cочетаемость нарушений обмена веществ при мочекаменной болезни. Сборник научных трудов «Актуальные вопросы урологии и оперативной нефрологии. 70 лет урологической клинике РГМУ, 1924–1994. М., 1994. C. 24–32).

67. Apolikhin O.I., Dzeranov N.K., Pavlov A.Yu., Golocanov S.A., Cherepanova E.V.A role of the study of metabolic disturbances of stone-forming substances in the stone prevention in children. Tezisy dokladov Sb. trudov X konferencii molodyh uchenyh-medikov stran SNG. Almaty, 2009. С. 172–174. Russian (Аполихин О.И., Дзеранов Н.К., Павлов А.Ю., Голованов С.А.,Черепанова Е.В. Роль исследования метаболических нарушений камнеобразующих веществ в метафилактике мочекаменной болезни у детей. Тезисы докладов Сб. трудов Х конференции молодых ученых-медиков стран СНГ. Алматы, 2009. C. 172–174).

68. Evan A.P. et al. Contrasting histopathology and crystal deposits in kidneys of idiopathic stone formers who produce hydroxy apatite, brushite, or calcium oxalate stones. Anat. Rec. (Hoboken). 2014;297:731–748.

69. Siener R., Netzer L., Hesse A. Determinants of brushite stone formation: a case-control study. PLoS ONE. 2013;8:e78996.

70. Sakhaee K., Adams-Huet B., Moe O.W., Pak C.Y.C. Pathophysiologic basis for normouricosuric uric acid nephrolithiasis. Kidney Int. 2002;62:971–979.

71. Konstantinova O.V., Dzeranov N.K., Lavrinova L.N., Derevyanko N.N., Golovanov S.A., Novodvorskaya I.K. Bacteriuria in different types of urinary stone disease. Х Rossiiskyi national’nyi congress “Chelovek i lekarstvo”. Tezisy dokl., April 7–10 2003. Р. 224. Russian (Константинова О.В., Дзеранов Н.К., Лавринова Л.Н., Деревянко Н.Н., Голованов С.А., Новодворская И.К. Бактериурия при различных формах мочекаменной болезни. Х Российский национальный конгресс «Человек и лекарство». Тезисы докл. М., 7–11 апреля 2003. C. 224).

72. Griffith D.P., Osborne C.A. Infection (urease) stones. Miner. Electrolyte Metab. 1987;13:278–285.

73. Konstantinova O.V., Katibov M.I., Znenko E.K. Infectious and inflammatory process in kidneys as one of the factors of formation of staghorn stones. Tezisy doklodov.Materiali XV Kongressa Rossiiskogo obshchestva urologov. “Urologiia v XXI veke”. SPB., 2015. P. 157. Russian (Константинова О.В., Катибов М.И., Яненко Э.К. Инфекционно-воспалительный процесс в почках как один из факторов риска образования коралловидных камней. Тезисы докладов. Материалы ХV Конгресса Российского общества урологов «Урология в ХХI веке». СПб., 2015. С. 157).

74. Kristensen C., Parks J.H., Lindheimer M., Coe F.L. Reduced glomerular filtration rate and hypercalciuria in primary struvite nephrolithiasis. Kidney Int. 1987;32:749–753.

75. Kok D.J., Khan S.R. Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int. 1994;46:847–854.

76. Curhan G.C., Willet W.C., Rimm E.B., Stampfer M.J. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N Engl J Med. 1993;328:833–838.

Об авторах / Для корреспонденции

А в т ор д л я с в я з и: В. С. Саенко – д.м.н., профессор кафедры урологии ФГАОУ ВО «Первый МГМУ им. И. М. Сеченова» (Сеченовский Университет), Москва, Россия; e-mail: saenko_vs@mail.ru

Полный текст публикаций доступен только подписчикам

Нет комментариев

Комментариев: 0

Вы не можете оставлять комментарии
Пожалуйста, авторизуйтесь