Быстрое и медленное прогрессирование увеличения размера очага инфаркта при инсульте по причине окклюзии крупной артерий. Значение для клиники и исследований

31.12.2017
Просмотров: 312

Department of Neurology and Department of Neurosurgery, Stroke Institute, University of Pittsburgh Medical Center.

Приблизительно 40% случаев острого ишемического инсульта связано с окклюзией проксимального сегмента крупной внутричерепной артерии (ОКА) и ассоциировано с развитием неблагоприятного клинического исхода [1]. Раннее выполнение системного тромболизиса ТАП (тканевой активатор плазминогена) и внутриартериальной тромбэктомии приводит к уменьшению окончательного объема инфаркта, более низким показателям инвалидности и улучшению когнитивных функций после ОКА в каротидном бассейне [2–6]. Однако большинству пациентов с инсультом по причине ОКА такого лечения не проводят, потому что они поступают в стационар за пределами стандартных временных окон для реперфузионной терапии [7, 8]. По этой причине в последнее время происходит сдвиг парадигмы лечения, заключающийся в переходе к терапевтическому окну, специфичному по отношению к индивидуальной патофизиологии для каждого отдельного пациента, к индивидуальному временнóму окну, а не следование плану лечения в пределах стандартизованного временнóго окна [9, 10]. Принцип патофизиологически обоснованной реперфузионной терапии основан на фундаментальной концепции о динамической связи между объемами ядра ишемии (вещество мозга с уже сформировавшимся инфарктом) и ишемической пенумбры (вещество мозга с патофизиологическими нарушениями, но потенциально жизнеспособное) [11–13]. После окклюзии артерии может происходить постепенное распространение зоны ядра ишемии на зону пенумбры, что модулируется состоянием коллатерального кровотока, ключевого элемента, определяющего темп развития ишемического процесса [14]. Скорость увеличения размера очага инфаркта мозга индивидуальна, поскольку у пациентов с окклюзией проксимального сегмента средней мозговой артерии (СМА) или внутренней сонной артерии (ВСА) объем поражения при инсульте варьируется независимо от времени, прошедшего от момента появления симптомов инсульта [15–18]. Мы считаем пациентов с ОКА, у которых происходит быстрое увеличение размера очага инфаркта, пациентами с быстрым прогрессированием. У таких пациентов плохо развито коллатеральное кровообращение и размер ядра ишемии достаточно большой, несмотря на их госпитализацию в пределах 6 ч от момента развития инсульта. И, наоборот, у значительного числа пациентов сохраняется небольшое ядро ишемии и значительный объем жизнеспособной ткани в период от 6 ч до нескольких дней после развития стойкой ОКА [17, 19]. Таких пациентов считают пациентами с медленным прогрессированием, поскольку у них сохранен адекватный коллатеральный кровоток и происходит медленное увеличение размера очага инфаркта (рис. 1, см. на цв. вклейке). Только у незначительного числа пациентов с исключительно хорошо развитым коллатеральным кровоснабжением не происходит увеличение размера очага инфаркта даже при отсутствии реканализации. Несмотря на то что быстрое и медленное прогрессирования по причине ОКА часто наблюдаются у пациентов, которых рассматривают в качестве кандидатов на проведение эндоваскулярной терапии [15, 20], частота развития и патофизиология этих клинических фенотипов в общей популяции до сих пор плохо изучена.

Частота встречаемости случаев быстрого и медленного увеличения ядра ишемии при острой ОКА и значение для проведения реперфузионной терапии

Распределение быстрого и медленного прогрессирования ОКА, вероятно, укладывается в пределы спектра различных темпов увеличения размера ядра инфаркта [18, 20], которые можно привязать к раннему (≤6 ч) или отсроченному (>6 ч) временным окнам после развития инсульта. Это можно подтвердить, проводя оценку данных мультимодальной компьютерной томографии или церебральной рентгеновской ангиографии (таблица 1). Наличие хорошего коллатерального кровотока на момент поступления было ассоциировано с бóльшим объемом жизнеспособной ишемизированной ткани, медленным темпом снижения оценки по шкале ASPECTS (Alberta Stroke Program Early CT Score) между переводами в клиники и развитием благоприятных клинических исходов [22–24]. В последних знаковых испытаниях эндоваскулярных методов лечения инсульта, в которых оценивали наличие промежуточного или хорошего коллатерального кровотока по данным экстренной КТ-ангиографии или перфузионной КТ, у 36–47% пациентов даже при достижении значимой реперфузии в период от 3 до 6 ч от момента появления симптомов сохранялась функциональная зависимость [25]. Эти данные свидетельствуют о том, что ≤50% пациентов с острой окклюзией проксимального отдела СМА или ВСА можно рассматривать в качестве пациентов с быстрым прогрессированием, у которых динамика увеличения размера очага инфаркта наиболее чувствительна к продолжительности ишемии в связи с отсутствием коллатерального кровообращения и у которых эффективно проведение реперфузии в максимально ранние сроки [26]. В одном одноцентровом исследовании с участием пациентов с острой окклюзией М1 сегмента СМА, визуализацию у которых проводили с помощью перфузионной компьютерной томографии с использованием ксенона, в течение первых 6 ч от момента развития инсульта у 9 (25%) из 36 пациентов зона ядра ишемии занимала ≥50% бассейна СМА, тогда как у 10 (27%) из 36 пациентов эта зона занимала ≤20% до проведения реканализации [18]. Еще в одном исследовании показали, что у 20% пациентов, обследованных в течение первых 8 ч после развития инсульта с окклюзией M1 сегмента, объем очага инфаркта, по результатам диффузионно-взвешенной магнитно-резонансной томографии (ДВ-МРТ), составлял >70 мл [16], что, возможно, было признаком сверхбыстрого прогрессирования ишемического повреждения вещества мозга. Таким образом, от 20 до 30% пациентов с острой ОКА, вероятно, попадают в спектр сверхбыстрого прогрессирования и могут быть подвержены особому риску быстрого развития отека головного мозга и симптомного внутричерепного кровоизлияния, определяющих злокачественный профиль заболевания [27]. Поскольку у таких пациентов реже всего развиваются благоприятные исходы, они, как полагают, хуже отвечают на проведение реперфузионной терапии [27]. Однако по сравнению с оказанием только стандартной медицинской помощи нельзя полностью исключить эффективность механической тромбэктомии у пациентов со сверхбыстрым прогрессированием инсульта по причине ОКА, которые поступают в стационар с бóльшим объемом очага ишемии и получают лечение в ранние сроки от момента появления симптомов инсульта [28]. Тем не менее этой группе пациентов в большинстве случаев не проводят эндовакулярного лечения в остром периоде по причине устоявшегося мнения о вреде реперфузии в этих условиях из-за повышения частоты развития симптомного внутричерепного кровоизлияния и злокачественного отека головного мозга.

С другой стороны, частота медленного прогрессирования может составлять до 30% случаев среди пациентов с ОКА в каротидном бассейне, поступающих на лечение в крупные специализированные центры [17]. Поскольку при медленном прогрессировании эффективность эндоваскулярной реперфузии сохраняется даже через 8 ч после начала заболевания при разумном...

Список литературы

  1. Smith W.S., Lev M.H., English J.D., Camargo E.C., Chou M., Johnston S.C., et al. Significance of large vessel intracranial occlusion causing acute ischemic stroke and TIA. Stroke. 2009;40:3834–3840. doi: 10.1161/STROKEAHA.109.561787.
  2. Berkhemer O.A., Fransen P.S., Beumer D., van den Berg L.A., Lingsma H.F., Yoo A.J., et al; MR CLEAN Investigators. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372:11–20. doi: 10.1056/NEJMoa1411587.
  3. Campbell B.C., Mitchell P.J., Kleinig T.J., Dewey H.M., Churilov L., Yassi N., et al; EXTEND-IA Investigators. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372:1009–1018. doi: 10.1056/NEJMoa1414792.
  4. Goyal M., Demchuk A.M., Menon B.K., Eesa M., Rempel J.L., Thornton J., et al; ESCAPE Trial Investigators. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372:1019–1030. doi: 10.1056/NEJMoa1414905.
  5. Jovin T.G., Chamorro A., Cobo E., de Miquel M.A., Molina C.A., Rovira A., et al; REVASCAT Trial Investigators. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015;372:2296–2306. doi: 10.1056/NEJMoa1503780.
  6. Saver J.L., Goyal M., Bonafe A., Diener H.C., Levy E.I., Pereira V.M., et al; SWIFT PRIME Investigators. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015;372:2285–2295. doi: 10.1056/NEJMoa1415061.
  7. Jauch E.C., Saver J.L., Adams H.P. Jr, Bruno A., Connors J.J., Demaerschalk B.M., et al; American Heart Association Stroke Council; Council on Cardiovascular Nursing; Council on Peripheral Vascular Disease; Council on Clinical Cardiology. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44:870–947. doi: 10.1161/STR.0b013e318284056a.
  8. Adeoye O., Hornung R., Khatri P., Kleindorfer D. Recombinant tissuetype plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years. Stroke. 2011;42:1952–1955. doi: 10.1161/STROKEAHA.110.612358.
  9. Saver J.L. Time is brain–quantified. Stroke. 2006;37:263–266. doi: 10.1161/01.STR.0000196957.55928.ab.
  10. Hill M.D., Goyal M., Demchuk A.M., Fisher M. Ischemic stroke tissuewindow in the new era of endovascular treatment. Stroke. 2015;46:2332–2334. doi: 10.1161/STROKEAHA.115.009688.
  11. Astrup J., Siesjö B.K., Symon L. Thresholds in cerebral ischemia – the ischemic penumbra. Stroke. 1981;12:723–725.
  12. Jones T.H., Morawetz R.B., Crowell R.M., Marcoux F.W., FitzGibbon S.J., DeGirolami U., et al. Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg. 1981;54:773–782. doi: 10.3171/jns.1981.54.6.0773.
  13. Darby D.G., Barber P.A., Gerraty R.P., Desmond P.M., Yang Q., Parsons M., et al. Pathophysiological topography of acute ischemia by combined diffusion-weighted and perfusion MRI. Stroke. 1999;30:2043–2052.
  14. Liebeskind D.S. Collaterals in acute stroke: beyond the clot. Neuroimaging Clin N Am. 2005;15:553–573, x. doi: 10.1016/j.nic.2005.08.012.
  15. Wheeler H.M., Mlynash M., Inoue M., Tipirnini A., Liggins J., Bammer R., et al; DEFUSE 2 Investigators. The growth rate of early DWI lesions is highly variable and associated with penumbral salvage and clinical outcomes following endovascular reperfusion. Int J Stroke. 2015;10:723–729. doi: 10.1111/ijs.12436.
  16. Hakimelahi R., Vachha B.A., Copen W.A., Papini G.D., He J., Higazi M.M., et al. Time and diffusion lesion size in major anterior circulation ischemic strokes. Stroke. 2014;45:2936–2941. doi: 10.1161/STROKEAHA.114.005644.
  17. Copen W.A., Rezai Gharai L., Barak E.R., Schwamm L.H., Wu O., Kamalian S., et al. Existence of the diffusion-perfusion mismatch within 24 hours after onset of acute stroke: dependence on proximal arterial occlusion. Radiology. 2009;250:878–886. doi: 10.1148/radiol.2503080811.
  18. Jovin T.G., Yonas H., Gebel J.M., Kanal E., Chang Y.F., Grahovac S.Z., et al. The cortical ischemic core and not the consistently present penumbra is a determinant of clinical outcome in acute middle cerebral artery occlusion. Stroke. 2003;34:2426–2433. doi: 10.1161/01.STR.0000091232.81947.C9.
  19. Marchal G., Beaudouin V., Rioux P., de la Sayette V., Le Doze F., Viader F., et al. Prolonged persistence of substantial volumes of potentially viable brain tissue after stroke: a correlative PET-CT study with voxel-based data analysis. Stroke. 1996;27:599–606.
  20. Olivot J.M., Sissani L., Meseguer E., Inoue M., Labreuche J., Mlynash M., et al. Impact of initial diffusion-weighted imaging lesion growth rate on the success of endovascular reperfusion therapy. Stroke. 2016;47:2305–2310. doi: 10.1161/STROKEAHA.116.013916.
  21. Miteff F., Levi C.R., Bateman G.A., Spratt N., McElduff P., Parsons M.W. The independent predictive utility of computed tomography angiographic collateral status in acute ischaemic stroke. Brain. 2009;132(pt 8):2231–2238. doi: 10.1093/brain/awp155.
  22. Liebeskind D.S., Jahan R., Nogueira R.G., Zaidat O.O., Saver J.L.; SWIFT Investigators. Impact of collaterals on successful revascularization in Solitaire FR with the intention for thrombectomy. Stroke. 2014;45:2036–2040. doi: 10.1161/STROKEAHA.114.004781.
  23. Menon B.K., Qazi E., Nambiar V., Foster L.D., Yeatts S.D., Liebeskind D., et al; Interventional Management of Stroke III Investigators. Differential effect of baseline computed tomographic angiography collaterals on clinical outcome in patients enrolled in the Interventional Management of Stroke III Trial. Stroke. 2015;46:1239–1244. doi: 10.1161/STROKEAHA.115.009009.
  24. Sun C.H., Connelly K., Nogueira R.G., Glenn B.A., Zimmermann S., Anda K., et al. ASPECTS decay during inter-facility transfer predicts patient outcomes in endovascular reperfusion for ischemic stroke: a unique assessment of dynamic physiologic change over time. J Neurointerv Surg. 2015;7:22–26. doi: 10.1136/neurintsurg-2013-011048.
  25. Saver J.L., Goyal M., van der Lugt A., Menon B.K., Majoie C.B., Dippel D.W., et al; HERMES Collaborators. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. JAMA. 2016;316:1279–1288. doi: 10.1001/jama.2016.13647.
  26. Ribo M., Molina C.A., Cobo E., Cerdà N., Tomasello A., Quesada H., et al; REVASCAT Trial Investigators. Association between time to reperfusion and outcome is primarily driven by the time from imaging to reperfusion. Stroke. 2016;47:999–1004. doi: 10.1161/STROKEAHA.115.011721.
  27. Mlynash M., Lansberg M.G., De Silva D.A., Lee J., Christensen S., Straka M., et al; DEFUSE-EPITHET Investigators. Refining the definition of the malignant profile: insights from the DEFUSEEPITHET pooled data set. Stroke. 2011;42:1270–1275. doi: 10.1161/STROKEAHA.110.601609.
  28. Desilles J.-P., Consoli A., Redjem H., Coskun O., Ciccio G., Smajda S., et al. Successful reperfusion with mechanical thrombectomy is associated with reduced disability and mortality in patients with pretreatment diffusion-weighted imaging–alberta stroke program early computed tomography score ≤6. Stroke. 2017;48:963–969. doi: 10.1161/STROKEAHA.116.015202.
  29. Jovin T.G., Liebeskind D.S., Gupta R., Rymer M., Rai A., Zaidat O.O., et al. Imaging-based endovascular therapy for acute ischemic stroke due to proximal intracranial anterior circulation occlusion treated beyond 8 hours from time last seen well: retrospective multicenter analysis of 237 consecutive patients. Stroke. 2011;42:2206–2211. doi: 10.1161/STROKEAHA.110.604223.
  30. Jovin T.G., Albers G.W., Liebeskind D.S.; STAIR IX Consortium. Stroke Treatment Academic Industry Roundtable: the next generation of endovascular trials. Stroke. 2016;47:2656–2665. doi: 10.1161/STROKEAHA.116.013578.
  31. Astrup J., Symon L., Branston N.M., Lassen N.A. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke. 1977;8:51–57.
  32. Symon L., Pasztor E., Branston N.M. The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion: an experimental study by the technique of hydrogen clearance in baboons. Stroke. 1974;5:355–364.
  33. Olsen T.S., Larsen B., Herning M., Skriver E.B., Lassen N.A. Blood flow and vascular reactivity in collaterally perfused brain tissue. Evidence of an ischemic penumbra in patients with acute stroke. Stroke. 1983;14:332–341.
  34. Bardutzky J., Shen Q., Henninger N., Schwab S., Duong T.Q., Fisher M. Characterizing tissue fate after transient cerebral ischemia of varying duration using quantitative diffusion and perfusion imaging. Stroke. 2007;38:1336–1344. doi: 10.1161/01.STR.0000259636.26950.3b.
  35. Heiss W.D., Huber M., Fink G.R., Herholz K., Pietrzyk U., Wagner R., et al. Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood Flow Metab. 1992;12:193–203. doi: 10.1038/jcbfm.1992.29.
  36. Campbell B.C., Christensen S., Tress B.M., Churilov L., Desmond P.M., Parsons M.W., et al; EPITHET Investigators. Failure of collateral blood flow is associated with infarct growth in ischemic stroke. J Cereb Blood Flow Metab. 2013;33:1168–1172. doi: 10.1038/jcbfm.2013.77.
  37. Zhang H., Prabhakar P., Sealock R., Faber J.E. Wide genetic variation in the native pial collateral circulation is a major determinant of variation in severity of stroke. J Cereb Blood Flow Metab. 2010;30:923–934. doi:10.1038/jcbfm.2010.10.
  38. Jung S., Gilgen M., Slotboom J., El-Koussy M., Zubler C., Kiefer C., et al. Factors that determine penumbral tissue loss in acute ischaemic stroke. Brain. 2013;136(pt 12):3554–3560. doi: 10.1093/brain/awt246.
  39. Eikermann-Haerter K., Lee J.H., Yuzawa I., Liu C.H., Zhou Z., Shin H.K., et al. Migraine mutations increase stroke vulnerability by facilitating ischemic depolarizations. Circulation. 2012;125:335–345. doi: 10.1161/CIRCULATIONAHA.111.045096.
  40. Menon B.K., Smith E.E., Coutts S.B., Welsh D.G., Faber J.E., Goyal M., et al. Leptomeningeal collaterals are associated with modifiable metabolic risk factors. Ann Neurol. 2013;74:241–248. doi: 10.1002/ana.23906.
  41. Liebeskind D.S., Jovin T.G., Majoie C.B., Mitchell P.J., San Román L., Campbell B.C., et al. Abstract 176: Hermes: collaterals at angiography guide clinical outcomes. Stroke. 2017;48:A176–A176.
  42. Ribo M., Molina C.A., Delgado P., Rubiera M., Delgado-Mederos R., Rovira A., et al. Hyperglycemia during ischemia rapidly accelerates brain damage in stroke patients treated with tPA. J Cereb Blood Flow Metab. 2007;27:1616–1622. doi: 10.1038/sj.jcbfm.9600460.
  43. Wang S., Zhang H., Dai X., Sealock R., Faber J.E. Genetic architecture underlying variation in extent and remodeling of the collateral circulation. Circ Res. 2010;107:558–568. doi: 10.1161/CIRCRESAHA.110.224634.
  44. Lucitti J.L., Sealock R., Buckley B.K., Zhang H., Xiao L., Dudley A.C., et al. Variants of Rab GTPase-Effector Binding Protein-2 cause variation in the collateral circulation and severity of stroke. Stroke. 2016;47:3022–3031. doi: 10.1161/STROKEAHA.116.014160.
  45. Kao Y.J., Oyarzabal E.A., Zhang H., Faber J.E., Shih Y.I. Role of genetic variation in collateral circulation in the evolution of acute stroke: a Multimodal Magnetic Resonance Imaging Study. Stroke. 2017;48:754–761. doi: 10.1161/STROKEAHA.116.015878.
  46. Faber J., Lee Y., Menon B., Huang D., Wilhelmsen K., Powers W., et al. Abstract CT P41: genetic determinants of collateral status in stroke - the GENEDCSS study. Poster presentation. 20th International Stroke Conference, San Diego, CA: February 12–14, 2014.
  47. Liebeskind D.S., Kim D., Starkman S., Changizi K., Ohanian A.G., Jahan R., et al. Collateral failure? Late mechanical thrombectomy after failed intravenous thrombolysis. J Neuroimaging. 2010;20:78–82. doi:10.1111/j.1552-6569.2008.00295.x.
  48. Meier P., Gloekler S., Zbinden R., Beckh S., de Marchi S.F., Zbinden S., et al. Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation. 2007;116:975–983. doi: 10.1161/CIRCULATIONAHA.107.703959.
  49. Symon L., Ishikawa S., Meyer J.S. Cerebral arterial pressure changes and development of leptomeningeal collateral circulation. Neurology. 1963;13:237–250.
  50. Coyle P., Heistad D.D. Blood flow through cerebral collateral vessels in hypertensive and normotensive rats. Hypertension. 1986;8(6 pt 2):II67–II71.
  51. Symon L., Branston N.M., Strong A.J. Autoregulation in acute focal ischemia. An experimental study. Stroke. 1976;7:547–554.
  52. Chan S.L., Sweet J.G., Bishop N., Cipolla M.J. Pial collateral reactivity during hypertension and aging: understanding the function of collaterals for stroke therapy. Stroke. 2016;47:1618–1625. doi: 10.1161/STROKEAHA.116.013392.
  53. Beard D.J., McLeod D.D., Logan C.L., Murtha L.A., Imtiaz M.S., van Helden D.F., et al. Intracranial pressure elevation reduces flow through collateral vessels and the penetrating arterioles they supply. A possible explanation for ‘collateral failure’ and infarct expansion after ischemic stroke. J Cereb Blood Flow Metab. 2015;35:861–872. doi: 10.1038/jcbfm.2015.2.
  54. Toriumi H., Tatarishvili J., Tomita M., Tomita Y., Unekawa M., Suzuki N. Dually supplied T-junctions in arteriolo-arteriolar anastomosis in mice: key to local hemodynamic homeostasis in normal and ischemic states? Stroke. 2009;40:3378–3383. doi: 10.1161/STROKEAHA.109.558577.
  55. Coyle P., Heistad D.D. Development of collaterals in the cerebral circulation. Blood Vessels. 1991;28:183–189.
  56. Letourneur A., Roussel S., Toutain J., Bernaudin M., Touzani O. Impact of genetic and renovascular chronic arterial hypertension on the acute spatiotemporal evolution of the ischemic penumbra: a sequential study with MRI in the rat. J Cereb Blood Flow Metab. 2011;31:504–513. doi:10.1038/jcbfm.2010.118.
  57. McCabe C., Gallagher L., Gsell W., Graham D., Dominiczak A.F., Macrae I.M. Differences in the evolution of the ischemic penumbra in strokeprone spontaneously hypertensive and Wistar-Kyoto rats. Stroke. 2009;40:3864–3868. doi: 10.1161/STROKEAHA.109.559021.
  58. Lima F.O., Furie K.L., Silva G.S., Lev M.H., Camargo E.C., Singhal A.B., et al. The pattern of leptomeningeal collaterals on CT angiography is a strong predictor of long-term functional outcome in stroke patients with large vessel intracranial occlusion. Stroke. 2010;41:2316–2322. doi: 10.1161/STROKEAHA.110.592303.
  59. Shuaib A., Butcher K., Mohammad A.A., Saqqur M., Liebeskind D.S. Collateral blood vessels in acute ischaemic stroke: a potential therapeutic target. Lancet Neurol. 2011;10:909–921. doi: 10.1016/S1474-4422(11)70195-8.
  60. Symon L., Branston N.M., Chikovani O. Ischemic brain edema following middle cerebral artery occlusion in baboons: relationship between regional cerebral water content and blood flow at 1 to 2 hours. Stroke. 1979;10:184–191.
  61. Hossmann K.A., Schuier F.J. Experimental brain infarcts in cats. I. Pathophysiological observations. Stroke. 1980;11:583–592.
  62. Schuier F.J., Hossmann K.A. Experimental brain infarcts in cats. II. Ischemic brain edema. Stroke. 1980;11:593–601.
  63. Gotoh O., Asano T., Koide T., Takakura K. Ischemic brain edema following occlusion of the middle cerebral artery in the rat, I: the time courses of the brain water, sodium and potassium contents and blood-brain barrier permeability to 125I-albumin. Stroke. 1985;16:101–109.
  64. Simard J.M., Kent T.A., Chen M., Tarasov K.V., Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 2007;6:258–268. doi: 10.1016/S1474-4422(07)70055-8.
  65. Sheth K.N., Elm J.J., Molyneaux B.J., Hinson H., Beslow L.A., Sze G.K., et al. Safety and efficacy of intravenous glyburide on brain swelling after large hemispheric infarction (GAMES-RP): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2016;15:1160–1169. doi: 10.1016/S1474-4422(16)30196-X.
  66. Castillo J., Moro M.A., Blanco M., Leira R., Serena J., Lizasoain I., et al. The release of tumor necrosis factor-alpha is associated with ischemic tolerance in human stroke. Ann Neurol. 2003;54:811–819. doi: 10.1002/ana.10765.
  67. Hartings J.A., Rolli M.L., Lu X.C., Tortella F.C. Delayed secondary phase of peri-infarct depolarizations after focal cerebral ischemia: relation to infarct growth and neuroprotection. J Neurosci. 2003;23:11602–11610.
  68. Shin H.K., Nishimura M., Jones P.B., Ay H., Boas D.A., Moskowitz M.A., et al. Mild induced hypertension improves blood flow and oxygen metabolism in transient focal cerebral ischemia. Stroke. 2008;39:1548–1555. doi: 10.1161/STROKEAHA.107.499483.
  69. Winship I.R., Armitage G.A., Ramakrishnan G., Dong B., Todd K.G., Shuaib A. Augmenting collateral blood flow during ischemic stroke via transient aortic occlusion. J Cereb Blood Flow Metab. 2014;34:61–71. doi:10.1038/jcbfm.2013.162.
  70. Henninger N., Fisher M. Stimulating circle of Willis nerve fibers preserves the diffusion-perfusion mismatch in experimental stroke. Stroke. 2007;38:2779–2786. doi: 10.1161/STROKEAHA.107.485581.
  71. Terpolilli N.A., Kim S.W., Thal S.C., Kataoka H., Zeisig V., Nitzsche B., et al. Inhalation of nitric oxide prevents ischemic brain damage in experimental stroke by selective dilatation of collateral arterioles. Circ Res. 2012;110:727–738. doi: 10.1161/CIRCRESAHA.111.253419.
  72. Bang O.Y., Goyal M., Liebeskind D.S. Collateral circulation in ischemic stroke: assessment tools and therapeutic strategies. Stroke. 2015;46:3302–3309. doi: 10.1161/STROKEAHA.115.010508.
  73. Sun H.S., Doucette T.A., Liu Y., Fang Y., Teves L., Aarts M., et al. Effectiveness of PSD95 inhibitors in permanent and transient focal ischemia in the rat. Stroke. 2008;39:2544–2553. doi: 10.1161/STROKEAHA.107.506048.
  74. Hill M.D., Martin R.H., Mikulis D., Wong J.H., Silver F.L., Terbrugge K.G., et al; ENACT trial Investigators. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2012;11:942–950. doi: 10.1016/S1474-4422(12)70225-9.

Полный текст публикаций доступен только подписчикам

Нет комментариев

Комментариев: 0

Вы не можете оставлять комментарии
Пожалуйста, авторизуйтесь
Статьи по теме

Смотрите также