Урология №3 / 2017
Двухэнергетическая компьютерная томография в диагностике мочекаменной болезни: новый метод определения химического состава мочевых камней
1 Институт последипломного профессионального образования ФГБУ ГНЦ ФМБЦ им. А. И. Бурназяна
ФМБА России, кафедра урологии и андрологии, Москва, Россия; 2 Государственное бюджетное учреждение здравоохранения «Городская клиническая больница им. В. В. Вересаева» Департамента здравоохранения города
Москвы, Москва, Россия; 3 ФГАУ «Лечебно-реабилитационный центр» Минздрава России, Москва, Россия;
4 ФГБУ «Всероссийский центр экстренной и радиационной медицины им. А. М. Никифорова» Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий
стихийных бедствий, Санкт-Петербург, Россия
«Золотым» стандартом диагностики мочекаменной болезни является нативная компьютерная томография, позволяющая с высокой точностью определять локализацию и размер мочевых камней. Однако этот метод визуализации обладает ограниченными возможностями в определении химического состава конкрементов. Недавно вошедший в практику метод двухэнергетической компьютерной томографии, основанный на получении изображений на двух разных уровнях энергии, показал высокий уровень эффективности при определении состава мочевых камней. Обзор посвящен принципам и методам выполнения двухэнергетической компьютерной томографии на разных сканерах. Проанализированы результаты применения этого метода для диагностики мочекаменной болезни, определения химического состава камней; рассмотрены ограничения и сложности, возникающие при его использовании.
Мочекаменная болезнь (МКБ) – распространенное заболевание, которым страдают 4–20% населения [1]. Более того, за последние 10 лет наметилась тенденция к росту заболеваемости уролитиазом, причем как среди мужчин, так и среди женщин. В частности, это может быть связано с увеличением количества белка в рационе питания [2, 3]. С учетом высокой инцидентности и частоты рецидивов уролитиаза (до 50%) создание и внедрение точных и при этом экономически эффективных методов диагностики МКБ помимо медицинского значения приобретает и социальную значимость [4].
Наиболее часто встречаются мочевые камни (до 90% случаев), состоящие из оксалатов кальция (моно- и дигидратов) и фосфатов. До 10% мочевых камней состоят из солей мочевой кислоты (уратный уролитиаз) [5]. Заметно в меньшем количестве представлены конкременты, состоящие из цистина (1–2%), и камни иного химического состава, в том числе смешанные.
Этиология камнеобразования для каждого химического состава многофакторная. Она определяется уровнем pH мочи, диетой, сопутствующими заболеваниями, нарушениями метаболизма и др. Химический состав камней имеет большое значение при определении этиологии и патогенеза МКБ и, соответственно, выбора метода лечения, а также для метафилактики уролитиаза. Например, в работе [6] была выявлена связь химического состава конкрементов, не содержащих кальций, с соответствующими типами метаболических нарушений, при том что у пациентов с кальциевыми камнями имелись гетерогенные нарушения.
Лечение МКБ в остром периоде при развитии почечной колики (обструкции мочевых путей конкрементом) состоит из терапии (адекватное обезболивание с помощью нестероидных противовоспалительных препаратов, использование α-адреноблокаторов) и инвазивных методов лечения, таких как дистанционная ударно-волновая литотрипсия (ДУВЛ), чрескожная пункционная нефролитотрипсия и уретероскопия (с проведением уретеролитотрипсии и/или уретеролитоэкстракции) [4]. Выбор метода лечения зависит от разных факторов, например от размера и локализации камня. Немаловажен и химический состав мочевого камня.
К примеру, уратные камни, имея сравнительно низкую плотность, хорошо разрушаются с помощью ДУВЛ. При этом в 70–80% случаев они растворяются в ходе перорального хемолиза, что безусловно предпочтительнее, чем применение инвазивных методов лечения [7]. Оксалатные камни также довольно эффективно разрушаются посредством ДУВЛ, а для цистиновых камней и брушитов, имеющих высокую плотность, этот метод лечения не подходит [8].
Точное определение химического состава камней необходимо и при первичной диагностике уролитиаза, и при его рецидивах, так как важно оценить, имеются ли изменения в составе конкремента, – это может повлиять на дальнейшую тактику лечения.
Наиболее важную роль в диагностике МКБ играют методы визуализации.
Цель такой диагностики:
- обнаружение конкрементов и определение их локализации в мочевой системе;
- измерение размеров конкрементов;
- оценка химического состава конкрементов.
Нативная компьютерная томография (КТ) начала постепенно вытеснять обзорную и внутривенную урографию (раньше они были методом выбора), так как она обладает такими преимуществами, как высокая скорость выполнения, отсутствие необходимости применять контрастный препарат, диагностика других заболеваний мочевой системы (к примеру, опухолей и аномалий развития) [9]. Кроме того, КТ характеризуется очень высокой чувствительностью и специфичностью при диагностике мочевых камней: выше 95 и 96% соответственно. Также она позволяет оценивать такие важные характеристики конкрементов, как их размер, форма и локализация в мочевыделительной системе. Эти данные необходимы для определения тактики лечения пациентов [9]. На сегодняшний день КТ стала стандартным методом обследования пациентов с почечной коликой [10]. Хотя стандартная моноэнергетическая КТ показала сравнительно высокую эффективность при определении химического состава камней in vitro (до 80%), в исследованиях in vivo результаты оказались не так хороши [11]. Высокую информативность моноэнергетическая КТ демонстрирует при диагностике камней, состоящих из кальция оксалата моногидрата, брушитовых и цистиновых камней, тогда как при другом химическом составе конкрементов она ниже. В итоге, обладая рядом преимуществ, КТ не позволяет с достаточной точностью определять химический состав мочевых камней. Обычно это делается после оперативного удаления конкрементов. Указанный недостаток в перспективе может нивелировать метод двухэнергетической КТ. Концепция этого метода диагностики, заключающаяся в сканировании на двух энергетических уровнях, возникла еще на заре эры КТ. При этом технология одновременного сканирования получила активное развитие сравнительно недавно [9]. При двухэнергитической КТ сканирование проводится c помощью двух лучевых пучков – низкой и высокой энергии. Далее выполняется процессинг полученных данных, что дает возможность дифференцировать ткани одинаковой электронной плотности за счет разн...