Маркеры рака предстательной железы и потенциал использования АПФ, вырабатываемого простатой, в диагностике рака предстательной железы и доброкачественной гиперплазии предстательной железы

DOI: https://dx.doi.org/10.18565/urology.2019.2.73-81

04.06.2019
41

1) Факультет фундаментальной медицины МГУ им. М. В. Ломоносова, кафедра урологии и андрологии (зав. каф. – акад. РАН, проф., д.м.н. А. А. Камалов), Москва, Россия; 2) МНОЦ МГУ им. М. В. Ломоносова (директор – акад. РАН, проф., д.м.н. А. А. Камалов), Москва, Россия; 3) ГБУЗ «ГКБ № 31» ДЗМ (глав. врач – к.м.н. Н. М. Ефремова), Москва, Россия

Рак предстательной железы (РПЖ) – четвертое по частоте онкологическое заболевание у мужчин, частота его выявления на различных стадиях увеличивается с каждым годом. Успех лечения рака простаты напрямую зависит от того, насколько своевременно диагностировано заболевание. Наиболее применимым и единым во всем мире маркером рака простаты является простат-специфический антиген (ПСА). Ввиду недостаточной достоверности исследования крови на ПСА, особенно у пациентов с показателями от 4,5 до 10 нг/мл в возрасте более 50 лет, необходим поиск новых веществ, циркулирующих в крови, которые могли бы стать новыми маркерами РПЖ.
В данной статье обобщены накопленные данные о различных потенциальных маркерах, подчеркнута потенциальная роль использования ангеотензин-превращающего фермента (АПФ) в качестве нового маркера РПЖ.

Диагностика рака предстательной железы (РПЖ) остается одной из наиболее актуальных областей исследований в современной урологии.

До сих пор биохимический скрининг на РПЖ основывается на оценке уровня простатического специфического антигена (ПСА) крови. Вследствие того, что используемый во всем мире анализ крови на ПСА в большей степени специфичен для определения непосрежственно факта наличия заболевания в простате, а не конкретно РПЖ, поиск новых маркеров РПЖ служит одним из приоритетных направлений развития урологии.

Скрининг и ранняя диагностика РПЖ, контроль прогрессиррвания опухоли и ее рецидивирования нуждаются в более точных, чем ПСА, онкоспецифических маркерах. Результаты исследований последних двух десятилетий, посвященных поиску новых маркеров РПЖ, позволили выделить несколько перспективных соединений, требующих подробного изучения. В настоящей статье приведены как уже используемые маркеры РПЖ, так и те, которые, на наш взгляд, имеют потенциал широкого использования в качестве дополнительных показателей активности РПЖ. Кроме того, представлена новая методика определения ангиотензинпревращающего фермента (АПФ), вырабатываемого тканью предстательной железы, которая может позволить использовать АПФ человека как новый дополнительный маркер РПЖ.

Для преодоления проблем специфичности ПСА была предложена модификация его исследования. Одним из первых вариантов было определение скорости изменения концентрации ПСА или скорости удвоения значений ПСА: нарастание концентрации антигена более чем на 0,75 нг/мл/год предположительно свидетельствовало о злокачественном онкологическом процессе, однако крупные когортные исследования не выявили диагностической ценности этих модификаций [1]. В попытках снизить влияние размеров органа на значение уровня ПСА предлагался показатель плотности ПСА (отношение концентрации ПСА к объему простаты – PSAD), показавший более высокую чувствительность по сравнению с традиционным измерением ПСА (верхняя граница референсных значений – 0,15 нг/мл/см3). Расширением этой методики стало определение плотности ПСА переходной зоны (отношение концентрации ПСА к объему переходной зоны простаты – TZPSAD) как основного продуцента антигена в органе при ДГПЖ [2]. Предполагалось, что это увеличит диагностические возможности метода в дифференцировании РПЖ и ДГПЖ [3], однако другие исследования не выявили его значимого преимущества перед обычным исследованием плотности ПСА [4]. Одна работа выявила преимущество TZPSAD над PSAD в диапазоне значений ПСА 10,1–20 нг/мл [5].

Сегодня продолжается поиск новых молекулярных маркеров РПЖ, в некоторых за основу взят ПСА. До 2011 г. наиболее применимой модификацией ПСА-теста стало определение отношения свободного ПСА (свобПСА) к общему ПСА (общПСА). Было показано, что для пациентов с РПЖ характерны увеличение доли ПСА, связанного с белками сыворотки крови, и сопутствующее уменьшение отношения свобПСА/общПСА (далее%свобПСА). При значениях свобПСА 89,7796% чувствительность метода составляла 71,43%, специфичность – 71,43% [6]. Пороговым значением %свобПСА при выявлении РПЖ считается 15%, при более низких значениях вероятность обнаружения РПЖ возрастает до 71% [7]. Однако сравнительно низкая специфичность показателя %свобПСА (18% при общПСА 4–10 нг/мл и 6% при общПСА 2–4 нг/мл [11]) обусловила необходимость более надежных маркеров, способных предсказать наличие РПЖ в биоптате при общПСА 2–10 нг/мл. В качестве решения были предложены [-2]проПСА (изоформа ПСА, далее п2ПСА) и индекс здоровья простаты (п2ПСА/свобПСА ∙ √общПСА – PHI), позволяющие на их основе с приемлемой достоверностью выявлять РПЖ, дифференцировать его от ДГПЖ, а также различать высокоагрессивные (сумма Глисона >7) формы РПЖ от менее агрессивных (сумма Глисона

PCA3

Отходя от идеи применения ПСА и его производных в качестве предикторов РПЖ, ряд авторов предлагают использовать иные соединения в качестве маркеров этого заболевания. Одно из них – продукт гена Prostate Cancer Antigen 3 (PCA3, антиген рака простаты 3). Это матричная РНК, уровень которой в клетках, подвергнутых раковому перерождению, в 60 раз выше, чем в клетках нормальной или гиперплазированной простаты [9]. Ген PCA3 расположен на 9-й хромосоме в районе 9q21-22, имеет размер 25 тыс. пар нуклеотидов. В состав гена входят четыре экзона, содержащих 7 сайтов полиаденилирования. На сегодня известно несколько альтернативных изоформ зрелой РНК, транскрибируемой на основе гена PCA3, в большинстве из них отсутствует экзон 2. Чаще всего экспрессируются изоф...

Список литературы

1. Vickers A.J., Thompson I.M., Klein E., Carroll P.R., Scardino P.T. A commentary on PSA velocity and doubling time for clinical decisions in prostate cancer. Urology. 2014;83(3):592–596.

2. McNeal J.E., Redwine E.A., Freiha F.S., Stamey T.A. Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. The American journal of surgical pathology. 1988;12(12):897–906.

3. Kalish J., Cooner W.H., Graham S.D.J. Serum PSA adjusted for volume of transition zone (PSAT) is more accurate than PSA adjusted for total gland volume (PSAD) in detecting adenocarcinoma of the prostate. Urology. 1994;43(5).

4. Djavan B., Zlotta A.R., Byttebier G., Shariat S., Omar M., Schulman C.C., et al. Prostate specific antigen density of the transition zone for early detection of prostate cancer. The Journal of urology. 1998;160(2):411-8; discussion 8–9.

5. Shen P., Zhao J., Sun G., Chen N., Zhang X., Gui H., et al. The roles of prostate-specific antigen (PSA) density, prostate volume, and their zone-adjusted derivatives in predicting prostate cancer in patients with PSA less than 20.0 ng/mL. Andrology. 2017;5(3):548–555.

6. Perez-Lanzac-Lorca A., Barco-Sanchez A., Romero E., Martinez-Peinado A., Lopez-Elorza F., Sanchez-Sanchez E., et al. Correlation between the complex PSA/total PSA ratio and the free PSA/total PSA ratio, sensitivity and specificity of both markers for the diagnosis of prostate cancer. Actas urologicas espanolas. 2013;37(8):498–503.

7. Filella X., Alcover J., Molina R., Rodriguez A., Carretero P., Ballesta A.M. Clinical evaluation of free PSA/total PSA (prostate-specific antigen) ratio in the diagnosis of prostate cancer. European journal of cancer. 1997;33(8):1226–1229.

8. Stephan C., Stroebel G., Heinau M., Lenz A., Roemer A., Lein M., et al. The ratio of prostate-specific antigen (PSA) to prostate volume (PSA density) as a parameter to improve the detection of prostate carcinoma in PSA values in the range of < 4 ng/mL. Cancer. 2005;104(5):993-1003.

9. Fossati N., Buffi N.M., Haese A., Stephan C., Larcher A., McNicholas T.,et al. Preoperative Prostate-specific Antigen Isoform p2PSA and Its Derivatives,%p2PSA and Prostate Health Index, Predict Pathologic Outcomes in Patients Undergoing Radical Prostatectomy for Prostate Cancer: Results from a Multicentric European Prospective Study. European urology. 2015;68(1):132–138.

10. Bussemakers M.J., van Bokhoven A., Verhaegh G.W., Smit F.P., Karthaus H.F., Schalken J.A., et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer research. 1999;59(23):5975–5979.

11. Clarke R.A., Zhao Z., Guo A.Y., Roper K., Teng L., Fang Z.M., et al. New genomic structure for prostate cancer specific gene PCA3 within BMCC1: implications for prostate cancer detection and progression. PloS one. 2009;4(3):e4995.

12. Salagierski M., Verhaegh G.W., Jannink S.A., Smit F.P., Hessels D., Schalken J.A. Differential expression of PCA3 and its overlapping PRUNE2 transcript in prostate cancer. The Prostate. 2010;70(1):70–78.

13. Fradet Y., Saad F., Aprikian A., Dessureault J., Elhilali M., Trudel C., et al. uPM3, a new molecular urine test for the detection of prostate cancer. Urology. 2004;64(2):311–315; discussion 5–6.

14. Deras I.L., Aubin S.M., Blase A., Day J.R., Koo S., Partin A.W., et al. PCA3: a molecular urine assay for predicting prostate biopsy outcome. The Journal of urology. 2008;179(4):1587–1592.

15. Lucas N., Day M.L. The role of the disintegrin metalloproteinase ADAM15 in prostate cancer progression. Journal of cellular biochemistry. 2009;106(6):967–974.

16. Baren J.P., Stewart G.D., Stokes A., Gray K., Pennington C.J.,O’Neill R., et al. mRNA profiling of the cancer degradome in oesophago-gastric adenocarcinoma. Br J Cancer. 2012;107(1):143–149.

17. Dong D.D., Zhou H., Li G. ADAM15 targets MMP9 activity to promote lung cancer cell invasion. Oncology reports. 2015;34(5):2451–2460.

18. Toquet C, Colson A, Jarry A, Bezieau S, Volteau C, Boisseau P, et al. ADAM15 to alpha5beta1 integrin switch in colon carcinoma cells: a late event in cancer progression associated with tumor dedifferentiation and poor prognosis. International journal of cancer. 2012;130(2):278–287.

19. Ungerer C., Doberstein K., Burger C., Hardt K., Boehncke W.H.,Bohm B., et al. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma. Biochemical and biophysical research communications. 2010;401(3):363–369.

20. White J.M. ADAMs: modulators of cell-cell and cell-matrix interactions. Current opinion in cell biology. 2003;15(5):598–606.

21. Najy A.J., Day K.C., Day M.L. ADAM15 supports prostate cancer metastasis by modulating tumor cell-endothelial cell interaction. Cancer research. 2008;68(4):1092–1009.

22. Burdelski C., Fitzner M., Hube-Magg C., Kluth M., Heumann A., Simon R., et al. Overexpression of the A Disintegrin and Metalloproteinase ADAM15 is linked to a Small but Highly Aggressive Subset of Prostate Cancers. Neoplasia. 2017;19(4):279–287.

23. Cao D.L., Yao X.D. Advances in biomarkers for the early diagnosis of prostate cancer. Chinese journal of cancer. 2010;29(2):229–233.

24. Dhir R., Vietmeier B., Arlotti J., Acquafondata M., Landsittel D., Masterson R., et al. Early identification of individuals with prostate cancer in negative biopsies. The Journal of urology. 2004;171(4):1419–1423.

25. Paul B., Dhir R., Landsittel D., Hitchens M.R., Getzenberg R.H. Detection of prostate cancer with a blood-based assay for early prostate cancer antigen. Cancer research. 2005;65(10):4097–4100.

26. Leman E.S., Cannon G.W., Trock B.J., Sokoll L.J., Chan D.W., Mangold L., et al. EPCA-2: a highly specific serum marker for prostate cancer. Urology. 2007;69(4):714–720.

27. Yoshimoto M., Joshua A.M., Cunha I.W., Coudry R.A., Fonseca F.P., Ludkovski O., et al. Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 2008;21(12):1451–1460.

28. Mehra R., Tomlins S.A., Yu J., Cao X., Wang L., Menon A., et al. Characterization of TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancer. Cancer research. 2008;68(10):3584–3590.

29. Hessels D., Smit F.P., Verhaegh G.W., Witjes J.A., Cornel E.B., Schalken J.A. Detection of TMPRSS2-ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer. Clinical cancer research: an official journal of the American Association for Cancer Research. 2007;13(17):5103–5108.

30. Luo J., Zha S., Gage W.R., Dunn T.A., Hicks J.L., Bennett C.J., et al. Alpha-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer research. 2002;62(8):2220–2226.

31. Sreekumar A., Laxman B., Rhodes D.R., Bhagavathula S., Harwood J., Giacherio D., et al. Humoral immune response to alpha-methylacyl-CoA racemase and prostate cancer. Journal of the National Cancer Institute. 2004;96(11):834–843.

32. Wei S., Dunn T.A., Isaacs W.B., De Marzo A.M., Luo J. GOLPH2 and MYO6: putative prostate cancer markers localized to the Golgi apparatus. The Prostate. 2008;68(13):1387–1395.

33. Kristiansen G., Fritzsche F.R., Wassermann K., Jager C., Tolls A., Lein M.,et al. GOLPH2 protein expression as a novel tissue biomarker for prostate cancer: implications for tissue-based diagnostics. Br J Cancer. 2008;99(6):939–948.

34. Meiers I., Shanks J.H., Bostwick D.G. Glutathione S-transferase pi (GSTP1) hypermethylation in prostate cancer: review 2007. Pathology. 2007;39(3):29–304.

35. Ellinger J., Bastian P.J., Jurgan T., Biermann K., Kahl P., Heukamp L.C., et al. CpG island hypermethylation at multiple gene sites in diagnosis and prognosis of prostate cancer. Urology. 2008;71(1):161–167.

36. Derezinski P., Klupczynska A., Sawicki W., Palka J.A., Kokot Z.J. Amino Acid Profiles of Serum and Urine in Search for Prostate Cancer Biomarkers: a Pilot Study. International journal of medical sciences. 2017;14(1):1–12.

37. Cannon G.W., Mullins C., Lucia M.S., Hayward S.W., Lin V., Liu B.C., et al. A preliminary study of JM-27: a serum marker that can specifically identify men with symptomatic benign prostatic hyperplasia. The Journal of urology. 2007;177(2):610–614; discussion 4.

38. Kulkarni P., Uversky V.N. Cancer/Testis Antigens: «Smart» Biomarkers for Diagnosis and Prognosis of Prostate and Other Cancers. International journal of molecular sciences. 2017;18(4).

39. Giorgio Ivan Russo, Federica Regis, Tommaso Castelli, Vincenzo Favilla, Salvatore Privitera, Raimondo Giardina, Sebastiano Cimino, Giuseppe Morgia. A systematic review and meta-analysis of the diagnostic accuracy of prostate health index and four-kallikrein panel score in predicting overall and high-grade prostate cancer. Clinical Genitourinary Cancer, 22 December 2016.

40. Rajnee Kanwal, Alexis R. Plaga, Xiaoqi Liu, Girish C. Shukla, Sanjay Gupta. MicroRNAs in prostate cancer: Functional role as biomarkers. Cancer Letters xxx (2017) 1e12.

41. Zapatero A., Prognostic Value of the Levels of Circulating Tumor Cells (CTCs) in Peripheral Blood in Patients With Prostate Cancer at High Risk (Clinical Stages IIB-III) Treated Radically With Radiotherapy and Hormone Therapy. 2013, https://clinicaltrials.gov/ct2/show/record/NCT01800058?term=CellSearch+Circulating+tumor+cells&rank=26

42. Sunil Parimi & Jenny J. Ko. Recent advances in circulating tumor. cells and cell-free DNA in metastatic prostate cancer: a review.

43. Helen M. Wise, Miguel A. Hermida and Nicholas R. Leslie. Prostate cancer, PI3K, PTEN and prognosis. Clinical Science (2017) 131, 197–210.

44. Xiao Z. Shen, Frank S. Ong, Ellen A. Bernstein, Tea Janjulia, WendellLamar B. Blackwell, Kandarp H. Shah, Brian L. Taylor, Romer A. Gonzalez-Villalobos, Sebastien Fuchs, and Kenneth E. Bernstein Non-tradicional roles of Angiotensin converting enzyme Hуpertension. 2012; 59(4): 763–768

45. Елисеева Ю.Е. Биоорганическая химия. 1998;24:232–240.

46. Hooper N.M. Angiotensin converting enzyme: implications from molecular biology for its physiological functions Int J Biochem. 1991;23(7-8):641–647.

47. Kryukova O.V., Tikhomirova V.E., Golukhova E.Z., Evdokimov V.V., Kalantarov G.F., Trakht I.N, et al. Tissue Specificity of Human Angiotensin I-Converting Enzyme. PloS one. 2015;10(11):e0143455.

48. HGNC database. Symbol report for ACE. HGNC database. 2014 https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:2707

49. Singh U.S., Kumar M.V., Panda J.N. Angiotensin converting enzyme in semen and its possible role in capacitation. Andrologia. 1985 Sep-Oct;17(5):472–475.

50. Uemura H. Role of renin-angiotensin system in prostate cancer. Gan To Kagaku Ryoho. 2009;8(36):1228-33.

51. van Sande M., Nagamatsu A., Scharpé S., Neels H., Van Camp K. Tripeptidyl carboxypeptidase activity of angiotensin-converting enzyme in human tissues of the urogenital tract. Urol Int.

52. Ruiter V.L., Van Duijn C.M., Stricker B.H. The ACE insertion/deletion polymorphism and risk of cancer, a review and meta-analysis of the literature. Curr Cancer Drug Targets. 2011.

53. Ripka J.E., Ryan J.W., Valido F.A., Chung A.Y., Peterson C.M., Urry R.L.N-glycosylation of forms of angiotensin converting enzyme from four mammalian species. Biochemical and biophysical research communications. 1993;196(2):503–508.

54. Liu T., Qian W.J., Gritsenko M.A., Camp D.G., 2nd, Monroe M.E.,Moore R. et al. Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. Journal of proteome research. 2005;4(6):2070–2080.

55. Kryukova O.V., Tikhomirova V.E., Golukhova E.Z., Evdokimov V.V. et al. Tissue Specificity of Human Angiotensin I-Converting Enzyme PLoS ONE 23 Nov 2015, 10(11):e0143455.

Об авторах / Для корреспонденции

А в т о р д л я с в я з и: В. Н. Мамедов – аспирант кафедры урологии и андрологии факультета фундаментальной
медицины МГУ им. М. В. Ломоносова, Москва, Россия; e-mail: mvadim_91@yahoo.com

Полный текст публикаций доступен только подписчикам

Нет комментариев

Комментариев: 0

Вы не можете оставлять комментарии
Пожалуйста, авторизуйтесь