Фарматека №6 (200) / 2010

Нанотехнологии в диагностике и лечении злокачественных опухолей

1 апреля 2010

ФГУ “НИИ онкологии им. Н.Н. Петрова” Росмедтехнологий, Санкт-Петербург. СПбГМУ им. Акад. И.П. Павлова, Санкт-Петербург.

Нанобиотехнология – активно развивающаяся область нанотехнологии, включает биомедицинское применение систем наноразмеров. Наноматериалы размерами от 1 до 1000 нм предоставляют возможность уникального взаимодействия с биологическими системами на молекулярном уровне, что может иметь большое значение при обнаружении, диагностике и лечении рака. Открывающиеся перспективы привели к образованию новой дисциплины – наноонкологии. Использование наночастиц – это новый метод таргетного воздействия, повышающий эффективность и снижающий токсичность как существующих, так и новых противоопухолевых препаратов. Ожидается, что в ближайшем будущем внедрение нанотехнологий приведет к революционным изменениям не только в онкологии, но и в медицине в целом.

Введение

Нанобиотехнология, в рамках которой разрабатывается биомедицинское применение систем, имеющих наноразмеры, – активно развивающаяся область нанотехнологии. Наноматериалы размером от 1 до 1000 нм предоставляют возможность уникального взаимодействия с биологическими системами на молекулярном уровне. Методы нанобиотехнологии могут быть использованы при обнаружении, диагностике и лечении рака, что привело к образованию новой дисциплины – наноонкологии [1, 2]. Возможность применения наночастиц разрабатывается для визуализации опухоли in vivo, биомолекулярного профилирования биомаркеров опухолевого роста и таргетной доставки препаратов. Эти методики, основанные на нанотехнологии, могут широко применяться в онкологии.

Хорошо известно, что рак молочной железы (РМЖ) может экспрессировать белковые биомаркеры, например рецепторы эстрогенов и прогестерона, на основании наличия которых планируется лечение заболевания. Применение полупроводниковых флуоресцентных нанокристаллов, используемых в качестве квантовых точек различных размеров и с разным спектром излучения с целью визуализации антител, позволяет одновременно классифицировать и точно определять количество этих таргетных белков в одной опухолевой секции [3]. Использование золотосодержащих наночастиц (например, зондов Raman) обеспечивает определение качественной и количественной характеристики нескольких протеинов в одной секции опухоли. Это позволяет планировать специфическую противоопухолевую терапию, основываясь на индивидуальном белковом профиле конкретного пациента [4]. Возможность обнаружения нескольких молекулярных мишеней одновременно в образцах опухоли позволяет определить характер связи между продуктами гена и протеинами в режиме реального времени [5]. Кроме того, эффекты индивидуализированного лечения, основанные на экспрессии таргетных протеинов, могут проверяться до и после лечения, что позволяет быстро оценивать эффективность таргетной терапии.

Нанотехнологические методы (например, применение наноконсолей и нанозондов) активно исследуются с целью применения их для диагностики опухолевого процесса [6], т. к. наночастицы, объединенные с раково-специфическими таргетными лигандами могут использоваться для раннего обнаружения опухолей, что обеспечивает своевременное вмешательство с использованием химиопревентивного агента, а также выявление отдаленных метастазов [7]. Многообещающие результаты получены при использовании сверхмагнитных наночастиц с металлическим ядром, биоконъюгированных с антителами против HER2/ neu при одновременной визуализации опухоли и таргетном терапевтическом воздействии in vivo [8].

Изучается несколько нанотехнологических подходов, направленных на улучшение доставки химиотерапевтических агентов к опухолевым клеткам с целью минимизации токсических эффектов препаратов на здоровые ткани при сохранении противоопухолевой эффективности. Доксорубицин был соединен с липосомальной системой доставки в комплекс, наночастицы которого сохраняли эффективность, но при этом токсическое действие препарата на миокард было снижено [9, 10]. Одна из таких систем доставки (липосомальный доксорубицин с ковалентно присоединенным полиэтиленгликолем – пегилированный липосомальный доксорубицин, ПЛД) одобрена для лечения рефрактерного рака яичников и саркомы Капоши в США. Наночастицы связанного альбумином паклитаксела (NAB) также более эффективны по сравнению с традиционной формой растворенного в касторовом масле паклитаксела при большей безопасности применения [11, 12]. Препарат утвержден в США для лечения метастатического РМЖ.

Конкурентная визуализация и таргетная терапия

Как было сказано выше, наночастицы могут быть соединены с лигандами, обладающими различным аффинитетом, и использоваться как средства контрастирования, что позволяет визуализировать структуры доклеточного уровня in vivo. Наночастицы, объединенные с таргетными антителами, одновременно могут быть использованы для диагностики и противоопухолевого лечения. Предварительные исследования in vitro и in vivo продемонстрировали большой потенциал данного метода [8, 13, 14]. В одной из методик для конъюгации таргетных лигандов с наночастицами (анти-HER2/neu антитела с модифицированной металлической наночастицей для формирования нанооболочки) [15] используют биотин и стрептавидин в качестве средств объединения. Конструкция состоит из сферического диэлектрического ядра наночастицы, сделанного из кремния и окруженного ...

Семиглазов В.Ф., Палтуев Р.М., Семиглазов В.В., Дашян Г.А., Бессонов А.А., Пеньков К.Д., Васильев А.Г.
Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.