Особенности ведения больных хронической болезнью почек и сахарным диабетом 2 типа: необходимость мультидисциплинарного подхода

17.06.2016
762

1 Кафедра нефрологии и гемодиализа ГБОУ ДПО «Российская медицинская академия последипломного образования» МЗ РФ, Москва; 2 ГБУЗ «Городская клиническая больница № 1 им. Н.И. Пирогова», Москва

В статье обсуждается взаимное влияние сахарного диабета 2 типа и хронической болезни почек, которое приводит к изменению как клинических проявлений этих патологий, так и терапевтических подходов к их коррекции.

За последнее десятилетие благодаря развивающимся возможностям интернет-коммуникаций создаются международные регистры пациентов с социально значимыми заболеваниями. Это позволяет оценивать распространенность заболеваний в «планетарном» масштабе и выявлять серьезные угрозы для здоровья населения, которые могут быть недооценены на уровне отдельной страны в силу недостатка эпидемиологических данных. К таким угрозам для России относятся хроническая болезнь почек (ХБП) и сахарный диабет 2 типа (СД2): заболевания тесно связанные, взаимоусугубляющие и поражающие каждое по отдельности до 10% общей популяции.

По данным Диабетического атласа за 2015 г. (7-е издание) [1], выпускаемого Международной федерацией диабета (IDF) и объединяющего статистические показатели 230 национальных диабетических ассоциаций из 170 стран и территорий, на 01.01.2016 415 млн взрослой популяции Земли страдают сахарным диабетом. Из них 193 млн (46,5%) остаются недиагностированными. Еще 318 млн имеют нарушение толерантности к глюкозе и составляют группу риска (преддиабет). Смертность от СД превышает совокупные потери от ВИЧ, туберкулеза и малярии (рутинная статистика недооценивает вклад СД в смертность).

Сахарный диабет 2 типа составляет 90% от общего числа больных СД, причем все чаще этот тип диабета диагностируется у подростков и детей. Распространенность диабета в развитых странах составляет 9,1% населения (50% не диагностированы). РФ занимает 5-е место в десятке стран с наибольшим распространением СД. Число граждан РФ, страдающих СД, составляет 12,1 млн. По смертности от СД Россия занимает 4-е место в мире после Китая, Индии и США, причем 26% приходится на раннюю смертность – в возрасте до 60 лет.

Хроническая болезнь почек, по многочисленным эпидемиологическим исследованиям, поражает от 7,5 до 15,0% общей популяции [2, 3]. При этом диабетическая нефропатия (ДН) наблюдается у 20–40% больных СД и остается лидирующей причиной терминальной стадии ХБП (ТХБП) в США и странах Западной Европы [4]. Данные отечественного эпидемиологического исследования 2010 г. также подтвердили распространенность ДН от 20 до 50% (в среднем 43%) среди больных СД в различных регионах РФ [5, 6]. Однако в локальных регистрах статистические данные были в 2–4 раза ниже, что свидетельствует о недостатках учета осложнений СД. По данным регистра Российского диализного общества (РДО) [7], в 2011 г. СД отмечен как причина ТХБП в 17,7% случаев, в качестве сопутствующего заболевания – в 1,6%, что не отражает истинной картины взаимоотношений СД и ХБП, поскольку большая часть СД не получают заместительной почечной терапии (ЗПТ) и не отражены в регистре РДО, а регистра больных ХБП до ЗПТ в России не существует.

Сочетание СД2 и ХБП существенно изменяет и отягощает течение каждой из двух патологий. При СД2 риск смерти в 2–3 раза выше в группе младше 55 лет и на 30 и 40% в группах >65 и >75 лет соответственно по сравнению со здоровыми. Если же СД2 сочетается с ХБП, то у больных младше 55 лет такое сочетание повышает смертность в 14 раз по сравнению со здоровыми, в возрастной категории 55–64 лет – в 7, в группе 65–74 лет – в 6 раз [8]. Как клиническая картина, так и особенности терапии СД2 в условиях снижения СКФ претерпевают значительные изменения, которые следует учитывать для успешного ведения этих больных. С другой стороны, наличие СД ускоряет прогрессирование ХБП и утяжеляет ее основные осложнения: оксидативный стресс, хроническое воспаление, белково-энергетическую недостаточность (БЭН), минеральные и костные нарушения (МКН), сердечно-сосудистую патологию. В то же время осведомленность врачей-эндокринологов в области ХБП, а врачей нефрологов – в области СД, как показывает практика, ограничивается отдельными фактами и не носит систематического характера. Целью данного обзора служит обсуждение ключевых особенностей сочетанной патологии ХБП и СД2, с учетом которых врач, наблюдающий такого пациента, сможет выбрать рациональную терапевтическую стратегию и максимально снизить риски неблагоприятных исходов.

Особенности контроля гликемии и целевые значения HbA1c в условиях ХБП 3–5-й стадий

Гетерогенность гемоглобина, открытая в 1958 г., установила наличие 5 субфракций: HbA (97%), HbA2 (2,5%) и фетальный Hb (0,5%) [9]. В результате неэнзимной реакции конденсации между альдегидной группой глюкозы и N-терминалом аминогруппы β-цепочки HbA0 около 6% HbA становится гликированным. Гликированный гемоглобин не вреден или функционально неполноцен и представлен тремя фракциями: A1a, A1b и А1с. Будучи наибольшей фракцией, А1с выражается в виде отношения А1с/общий Hb, что позволяет компенсировать внутри- и межиндивидуальные вариации его уровня. В 1969 г. было показано, что уровень HbA1c повышен у больных СД [10], а в 1971 г. исследователи связали уровень HbA1c со средним уровнем глюкозы крови за определенный промежуток времени и с прогнозом течения СД [11]. Примерно 50% А1с отражает экспозицию с глюкозой в течение 30 дней, 40% – экспозицию в 31–90 и 10% – в 91–120 дней [12].

В ...

Список литературы

1. International Diabetes Federation. IDF Diabetes Atlas, 7th edn. Brussels, Belgium: International Diabetes Federation, 2015. http://www.diabetesatlas.org.

2. Coresh J., Astor B.C., Greene T., Eknoyan G., Levey A.S. Prevalence of chronic kidney disease and decreased kidney function in the adult US population. Third National Health and Nutrition Examination Survey. Am. J. Kidney Dis. 2003;41:1–12.

3. Mahon A. Epidemiology and classification of chronic kidney disease and management of diabetic nephropathy. Eur. Endocr. Rev. 2006:33–36.

4. Tuttle K.R., Bakris G.L., Bilous R.W., Chiang J.L., de Boer I.H., Goldstein-Fuchs J., Hirsch I.B., Kalantar-Zadeh K., Narva A.S., Navaneethan S.D., Neumiller J.J., Patel U.D., Ratner R.E., Whaley-Connell A.T., Molitch M.E. Diabetic kidney disease: a report from an ADA Consensus Conference. Diabetes Care. 2014;37:2864–2883.

5. Результаты реализации подпрограммы «Сахарный диабет» Федеральной целевой программы «Предупреждение и борьба с социально значимыми заболеваниями, 2007–2012 годы». Под ред. И.И. Дедова, М.В. Шестаковой. М., 2012.

6. Дедов И.И., Шестакова М.В., Викулова О.К. Государственный регистр сахарного диабета в Российской Федерации: статус 2014 г. и перспективы развития. Сахарный диабет. 2015;18(3):5–23.

7. Бикбов Б.Т., Томилина Н.А. Заместительная терапия больных с хронической почечной недостаточностью в Российской Федерации в 1998–2011 гг. (Отчет по данным Российского регистра заместительной почечной терапии. Часть первая). Нефрология и диализ. 2014;1:11–127.

8. Tancredi M., Rosengren A., Svensson A.-M., Kosiborod M., Pivodic A., Gudbjörnsdottir S., Wedel H., Clements M., Dahlqvist S., Lind M. Excess Mortality among Persons with Type 2 Diabetes. N. Engl. J. Med. 2015;373:1720–1732.

9. Allen D.W., Schroeder W.A., Balog J. Observations on the chromatographic heterogeneity of normal adult and fetal hemoglobin: a study of the effects of crystallization and hromatography in the heterogeneity and isoleucine content. J. Am. Chem. Soc. 1958;80:1628–1634.

10. Rahbar S., Blumenfeld O., Ranney H.M. Studies of an unusual hemoglobin in patients with diabetes mellitus. Biochem. Biophys. Res. Commun. 1969;36:838–843.

11. Trivelli L.A., Ranney H.M., Lai H.T. Hemoglobin components in patients with diabetes mellitus. N. Eng. J. Med. 1971;284:353–357.

12. Henrichs H.R. HbA1c-glycated Hemoglobin and Diabetes Mellitus, 1st ed. Bremen: UNI-MED, 2009.

13. Gallagher E.J., Le Roith D., Bloomgarden Z. Review of hemoglobin A(1c) in the management of diabetes. J. Diabetes. 2009;1:9–17.

14. El-Agouza I., Abu S.A., Sirdah M. The effect of iron deficiency anaemia on the levels of haemoglobin subtypes: possible consequences for clinical diagnosis. Clin. Lab. Haematol. 2002;24:285–289.

15. Jiao Y., Okumiya T., Saibara T., Park K., Sasaki M. Abnormally decreased HbA1c can be assessed with erythrocyte creatine in patients with a shortened erythrocyte age. Diabetes Care. 1998;21:1732–1735.

16. Ahmed A.T., Karter A.J., Warton E.M., Doan J.U., Weisner C.M. The relationship between alcohol consumption and glycemic control among patients with diabetes: the Kaiser Permanente Northern California Diabetes Registry. J. Gen. Intern. Med. 2008;23:275–282.

17. Nathan D.M., Bayless M., Cleary P., Genuth S., Gubitosi-Klug R., Lachin J.M., Lorenzi G., Zinman B. DCCT/EDIC Research Group. DCCT/EDIC Research Group: Diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: advances and contributions. Diabetes. 2013;62:3976–3986.

18. Williams M.E. Hemoglobin A1c in the ESRD Population: Status Report. Seminars in Dialysis. 2014;27(6):559–562.

19. Moen M.F., Zhan M., Hsu V.D., Walker L.D., Einhorn L.M., Seliger S.L., Fink J.C. Frequency of hypoglycaemia and its significance in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2009;4:1121–1127.

20. Shurraw S., Hemmelgarn B., Lin M., Majumdar S.R., Klarenbach S., Manns B., Bello A., James M., Turin T.C., Tonelli M.; Alberta Kidney Disease Network. Association between glycemic control and adverse outcomes in people with diabetes mellitus and chronic kidney disease. Arch. Intern. Med. 2011;171:1920–1927.

21. The Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 2008;358:2545–2559.

22. Papademetriou V., Lovato L., Doumas M., Nylen E., Mottl A., Cohen R.M., Applegate W.B., Puntakee Z., Yale J.F., Cushman W.C.; ACCORD Study Group. Chronic kidney disease and intensive glycemic control increase cardiovascular risk in patients with type 2 diabetes. Kidney Int. 2015;87(3):649–659.

23. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Клинические рекомендации. Под ред. И.И. Дедова, М.В. Шестаковой. М., 2015.

24. Hemmingsen B., Lund S.S., Gluud C., Vaag A., Almdal T., Hemmingsen C., Wetterslev J. Intensive glycaemic control for patients with type 2 diabetes: systematic review with meta-analysis and trial sequential analysis of randomised clinical trials. BMJ. 2011;343:d6898.

25. Ramirez S.P., McCullough K.P., Thumma J.R., Nelson R.G., Morgenstern H., Gillespie B..W, Inaba M., Jacobson S.H., Vanholder R., Pisoni R.L., Port F.K., Robinson B.M. Hemoglobin A1c levels and mortality in the diabetic hemodialysis population: findings from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Diabetes Care. 2012;35:2527–2532.

26. Renal Association. (2010a). 13th Report of the UK Renal Registry. www.renalreg.com/Reports/2010.

27. United States Renal Data System. 2010. USRD 2008 Annual Report.

28. Koppell K.J., Kataoka M., Williams S.M., Chisholm A.W., Vorgers S.M., Mann J.I. Nutritional intervention in patients with type 2 diabetes who are hyperglycaemic despite optimised drug treatment-Lifestyle Over and Above Drugs in Diabetes (LOADD) study: randomised controlled trial. BMJ. 2010;341:3337–3343.

29. Fouque D., Vennegoor M., Wee P.T., Wanner C., Basci A., Canaud B., Haage P., Konner K., Kooman J., Martin-Malo A., Pedrini L., Pizzarelli F., Tattersall J., Tordoir J., Vanholder R. EBPG guideline on nutrition. Nephrol. Dial. Transplant. 2007;22:ii45–87.

30. Fouque D., Lavill M. Low protein diets for chronic kidney disease in non diabetic adults (Review). Cochrane Database Syst. Rev. 2009;8(3):CD001892.

31. Fouque D., Pelletier S., Mafra D., et al. Nutrition and chronic kidney disease. Kidney Int. 2011;80:348–357.

32. Adams K.F., Schatzkin A., Harris T.B., Kipnis V., Mouw T., Ballard-Barbash R., Hollenbeck A., Leitzmann M.F. Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71years old. N. Engl. J. Med. 2006;355:763–778.

33. Flegal K.M., Kit B.K., Orpana H., Graubard B.I. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309:71–82.

34. Johansen K.L., Young B., Kaysen G.A., Chertow G.M. Association of body size with outcomes among patients beginning dialysis. Am. J. Clin. Nutr. 2004;80:324–332.

35. Ikizler T.A. Resolved: being fat is good for dialysis patients: the Godzilla effect: pro. J Am. Soc. Nephrol. 2008;19:1059–1062.

36. Beddhu S., Pappas L.M., Ramkumar N., Samore M. Effects of body size and body composition on survival in hemodialysis patients. J. Am. Soc. Nephrol. 2003;14:2366–2372.

37. Kalantar-Zadeh K., Kuwae N., Wu D.Y., Shantouf R.S., Fouque D., Anker S.D., Block G., Kopple J.D. Associations of body fat and its changes over time with quality of life and prospective mortality in hemodialysis patients. Am. J. Clin. Nutr. 2006;83:202–210.

38. Beddhu S. The body mass index paradox and an obesity, inflammation, and atherosclerosis syndrome in chronic kidney disease. Semin. Dial. 2004;17:229–232.

39. Eckel R.H. Clinical practice. Non-surgical management of obesity in adults. N. Eng. J. Med. 2008;358:1941–1950.

40. Hsu C.Y., McCulloch C.E., Iribarren C., Darbinian J., Go A.S. Body mass index and risk for end-stage renal disease. Ann. Intern. Med. 2006;144:21–28.

41. de Mutsert R., Snijder M.B., van der Sman-de Beer F., Seidell J.C., Boeschoten E.W., Krediet R.T., Dekker J.M., Vandenbroucke J.P., Dekker F.W. Association between body mass index and mortality is similar in the hemodialysis population and the general population at high age and equal duration of follow-up. J. Am. Soc. Nephrol. 2007;18:967–974.

42. Hoogeveen E.K., Halbesma N., Rothman K.J., Stijnen T., van Dijk S., Dekker F.W., Boeschoten E.W., de Mutsert R. Netherlands Cooperative Study on the Adequacy of Dialysis-2 (NECOSAD) Study Group. Obesity and mortality risk among younger dialysis patients. Clin. J. Am. Soc. Nephrol. 2012;7:280–288.

43. Elsayed E.F., Sarnak M.J., Tighiouart H., Griffith J.L., Kurth T., Salem D.N., Levey A.S., Weiner D.E. Waist-to-hip ratio, body mass index, and subsequent kidney disease and death. Am. J. Kidney Dis. 2008;52:29–38.

44. Kramer H., Shoham D., McClure L.A., Durazo-Arvizu R., Howard G., Judd S., Muntner P., Safford M., Warnock D.G., McClellan W. Association of waist circumference and body mass index with all-cause mortality in CKD: the REGARDS (Reasons for Geographic and Racial Differences in Stroke) Study. Am. J. Kidney Dis. 2011;58:177–185.

45. Postorino M., Marino C., Tripepi G., Zoccali C.; CREDIT (Calabria Registry of Dialysis and Transplantation) Working Group. Abdominal obesity and all-cause and cardiovascular mortality in end-stage renal disease. J. Am. Coll. Cardiol. 2009;53:1265–1272.

46. Koster A., Leitzmann M.F., Schatzkin A., Mouw T., Adams K.F., van Eijk J.T., Hollenbeck A.R., Harris T.B. Waist circumference and mortality. Am. J. Epidemiol. 2008;167:1465–1475.

47. Chagnac A., Weinstein T., Herman M., Hirsh J., Gafter U., Ori Y. The effects of weight loss on renal function in patients with severe obesity. JASN. 2003;14:1480–1486.

48. Morales E., Valero M.A., Leon M., Hernández E., Praga M. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies. Am. J. Kidney Dis. 2003;41:319–327.

49. Elsayed E.F., Tighiouart H., Weiner D.E., Griffith J., Salem D., Levey A.S., Sarnak M.J. Waist-to-hip ratio and body mass index as risk factors for cardiovascular events in CKD. Am. J. Kidney Dis. 2008;52:49–57.

50. Look AHEAD Research Study Group. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the Look AHEAD trial. Diabetes Care. 2007;30:1374–1383.

51. Robertson L.M., Waugh N., Robertson A. Protein restriction for diabetic renal disease (review). The Cochrane Collaboration. 2009.

52. Holman R.R., Paul S.K., Bethel M.A., Matthews D.R., Neil H.A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Eng. J. Med. 2008;359:1577–1589.

53. Vecchio S., Protti A. Metformin-induced lactic acidosis: no one left behind. Crit. Care. 2011;15:107.

54. Fimognari F.L., Corsonello A., Pastorell R., Antonelli-Incalzi R. Metformin-induced pancreatitis: a possible adverse drug effect during acute renal failure. Diabetes Care. 2006;29:1183.

55. Sirtori C.R., Pasik C. Re-evaluation of a biguanide, metformin: mechanism of action and tolerability. Pharmacol. Res. 1994;30:187–228.

56. NICE Clinical Guideline CG87. (2009). Type 2 diabetes-newer agents (partial update of CG66). www.NICE.org.uk.

57. Inzucchi S.E., Lipska K.J., Mayo H., Bailey C.J., McGuire D.K. Metformin in patients with type 2 diabetes and kidney disease: a systematic review. JAMA. 2014;312:2668–2675.

58. Hung S.-C., Chang Y.-K., Liu J.-S., Kuo K.L., Chen Y.H., Hsu C.C., Tarng D.C. Metformin use and mortality in patients with advanced chronic kidney disease: national, retrospective, observational, cohort study. Lancet Diabetes Endocrinol. 2015;3(8):605–614.

59. Ashley C., Currie A. UK Renal Pharmacy Group «The Renal Drugs Handbook». Oxford: Radcliffe Publishing Ltd, 2008.

60. CNAM Caisse National d’Assurance Maladie. http://www.afssaps.fr.

61. Elrick H., Stimmler L., Hlad C.J. Jr., Arai Y. Plasma insulin response to oral and intravenous glucose administration. J. Clin. Endocrinol. Metab. 1964;24:1076–1082.

62. Nowicki M., et al. Saxagliptin improves glycemic control and is well tolerated in patients with type 2 diabetes mellitus and renal impairment compared with placebo. Diabetes Obes. Metab. 2011;13(6):523–532.

63. Faull R., Lee L. Prescribing in renal disease. Australian Prescriber. 2007;30:17–20.

64. Jesus M., Frazão J.M. An overview on adynamic bone disease clinical and therapeutical approaches. State-of-the-Art-Review, FMUP, 2015

65. de Oliveira R.A., Barreto F.C., Mendes M., dos Reis L.M., Castro J.H., Britto Z.M., Marques I.D., Carvalho A.B., Moysés R.M., Jorgetti V. Peritoneal dialysis per se is a risk factor for sclerostin-associated adynamic bone disease. Kidney int. 2015;87(5):1039–1045.

66. Sugimoto T., Ritter C., Morrissey J., Hayes C., Slatopolsky E. Effects of high concentrations of glucose on PTH secretion in parathyroid cells. Kidney Int. 1990;37:1522–1527.

67. Okazaki R., Totsuka Y., Hamano K., Ajima M., Miura M., Hirota Y., Hata K., Fukumoto S., Matsumoto T. Metabolic improvement of poorly controlled noninsulin-dependent diabetes mellitus decreases bone turnover. J. Clin. Endocrinol. Metab. 1997;82:2915–2920.

68. Brownlee M., Cerami A., Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N. Engl. J. Med. 1998;318:1315–1321.

69. Vlassara H., Palace M.R. Diabetes and advanced glycation endproducts. J. Intern. Med. 2002;251:87–101.

70. Dyer D.G., Blackledge J.A., Thorpe S.R., Baynes J.W. Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. J. Biol. Chem. 1991;266:11654–11660.

71. Hein G.E. Glycation endproducts in osteoporosis – is there a pathophysiologic importance? Clin. Chim. Acta. 2006;371:32–36.

72. Saito M., Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21:195–214.

73. Katayama Y., Akatsu T., Yamamoto M., Kugai N., Nagata N. Role of nonenzymatic glycosylation of type I collagen in diabetic osteopenia. J. Bone Miner. Res. 1996;11:931–937.

74. Katayama Y., Celic S., Nagata N., Kugai N., Nagata N. Nonenzymatic glycation of type I collagen modifies interaction with UMR 201-10B preosteoblastic cells. Bone. 1997;21:237–242.

75. Yamagishi S., Nakamura K., Inoue H. Possible participation of advanced glycation end products in the pathogenesis of osteoporosis in diabetic patients. Med. Hypotheses. 2005;65:1013–1015.

76. Chen J., Wu A., Sun H., Drakas R., Garofalo C., Cascio S., Surmacz E., Baserga R. Functional significance of type 1 insulin-like growth factor-mediated nuclear translocation of the insulin receptor substrate-1 and beta-catenin. J. Biol. Chem. 2005;280(33):29912–29920.

77. Ardawi M.S., Akhbar D.H., Alshaikh A., Ahmed M.M., Qari M.H., Rouzi A.A., Ali A.Y., Abdulrafee A.A., Saeda M.Y. Increased serum sclerostin and decreased serum IGF-1 are associated with vertebral fractures among postmenopausal women with type-2 diabetes. Bone. 2013;56(2):355–362.

78. Witczak C.A., Jessen N., Warro D.M., Toyoda T., Fujii N., Anderson M.E., Hirshman M.F., Goodyear L.J. CaMKII regulates contraction- but not insulin-induced glucose uptake in mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2010;298:E1150–E1160.

79. Navaneethan S.D., Palmer S.C., Vecchio M., Craig J.C., Elder G.J., Strippoli G.F. Phosphate binders for preventing and treating bone disease in chronic kidney disease patients. Cochrane Database Syst. Rev. 2011;2:CD006023.

80. Jamal S.A., Vandermeer B., Raggi P., Mendelssohn D.C., Chatterley T., Dorgan M., Lok C.E., Fitchett D., Tsuyuki R.T. Effect of calciumbased versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: An updated systematic review and meta-analysis. Lancet. 2013;382:1268–1277.

81. Patel L., Bernard L.M., Elder G.J. Sevelamer Versus Calcium-Based Binders for Treatment of Hyperphosphatemia in CKD: A Meta-Analysis of Randomized Controlled Trials. Clin. J. Am. Soc. Nephrol. 2016;11(2):232–244.

82. Higgins J.P.T., Green S. Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0. The Cochrane Collaboration, 2011. http://www.handbook.cochrane.org.

83. Suki W.N., Zabaneh R., Cangiano J.L., Reed J., Fischer D., Garrett L., Ling B.N., Chasan-Taber S., Dillon M.A., Blair A.T., Burke S.K. Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int. 2007;72:1130–1137.

84. Di Iorio B., Molony D., Bell C., Cucciniello E., Bellizzi V., Russo D., Bellasi A.; INDEPENDENT Study Investigators. Sevelamer versus calcium carbonate in incident hemodialysis patients: Results of an open-label 24-month randomized clinical trial. Am. J. Kidney. 2013;62:771–778.

85. Block G.A., Spiegel D.M., Ehrlich J., Mehta R., Lindbergh J., Dreisbach A., Raggi P. Effects of sevelamer and calcium on coronary artery calcification in patients new to hemodialysis. Kidney Int. 2005;68:1815–1824.

86. Koschinsky T., He C.J., Mitsuhashi T., Bucala R., Liu C., Buenting C., Heitmann K., Vlassara H. Orally absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabetic nephropathy. Proc. Natl. Acad. Sci USA. 1997;94:6474–6479.

87. He C., Sabol J., Mitsuhashi T., Vlassara H. Dietary glycotoxins: Inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration. Diabetes. 1999;48:1308–1315.

88. Uribarri J., Cai W., Ramdas M., Goodman S., Pyzik R., Chen X., Zhu L., Striker G.E., Vlassara H. Restriction of advanced glycation end products improves insulin resistance in human type 2 diabetes: Potential role of AGER1 and SIRT1. Diabetes Care. 2011;34:1610–1616.

89. Vlassara H., Striker G.E. AGE restriction in diabetes mellitus: A paradigm shift. Nat. Rev. Endocrinol. 2011;7:526–539.

90. Vlassara H., Uribarri J., Cai W., Goodman S., Pyzik R., Post J., Grosjean F., Woodward M., Striker G.E. Effects of sevelamer on HbA1c, inflammation, and advanced glycation end products in diabetic kidney disease. CJASN. 2012;7:934–942.

91. Kakuta T., Tanaka R., Hyodo T., Suzuki H., Kanai G., Nagaoka M., Takahashi H., Hirawa N., Oogushi Y., Miyata T., Kobayashi H., Fukagawa M., Saito A. Effect of sevelamer and calcium-based phosphate binders on coronary artery calcification and accumulation of circulating advanced glycation end products in hemodialysis patients. Am. J. Kidney Dis. 2011;57(3):422–431.

92. Yubero-Serrano E.M., Woodward V., Poretsky L., Vlassara H., Striker G.E.; AGE-less Study Group. Effects of sevelamer carbonate on advanced glycation end products and antioxidant/pro-oxidant status in patients with diabetic kidney disease. CJASN. 2015;7;10(5):759–766.

93. Chertow G.M., Burke S.K., Raggi P. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int. 2002;62:245–252.

94. Ketteler M., Rix M., Fan S., Pritchard N., Oestergaard O., Chasan-Taber S., Heaton J., Duggal A., Kalra P.A. Efficacy and tolerability of sevelamer carbonate in hyperphosphatemic patients who have chronic kidney disease and are not on dialysis. CJASN. 2008;3:1125–1130.

95. Yilmaz M.I., Sonmez A., Saglam M., Yaman H., Kilic S., Eyileten T., Caglar K., Oguz Y., Vural A., Yenicesu M., Mallamaci F., Zoccali C. Comparison of calcium acetate and sevelamer on vascular function and fibroblast growth factor 23 in CKD patients: a randomized clinical trial. Am. J. Kidney Dis. 2012;59:177–185.

96. Ochiai M., Nakashima A., Takasugi N., Kiribayashi K., Kawai T., Usui K., Shigemoto K., Hamaguchi N., Kohno N., Yorioka N. Vitamin K(2) alters bone metabolism markers in hemodialysis patients with a low serum parathyroid hormone level. Nephron. Clinical practice. 2011;117(1):c15–c19.

97. Appelman-Dijkstra N.M., Papapoulos S.E. Sclerostin inhibition in the management of osteoporosis. Calcif Tissue Int. 2016;98(4):370–380.

Об авторах / Для корреспонденции

Информация об авторах:
Михайлова Н.А. – доцент кафедры нефрологии и гемодиализа ГБОУ ДПО РМАПО МЗ РФ, к.м.н.
E-mail: natmikhailova@mail.ru
Тишкина С.В. – врач-нефролог отделения гемодиализа ГБУЗ ГКБ
им. Н.И. Пирогова

Полный текст публикаций доступен только подписчикам

Нет комментариев

Комментариев: 0

Вы не можете оставлять комментарии
Пожалуйста, авторизуйтесь