Современные представления о механизмах почечного транспорта мочевой кислоты

10.03.2016
681

ГБОУ ВПО «Алтайский государственный медицинский университет» МЗ РФ, кафедра фармакологии

Результаты генетических исследований последних лет, широкое применение методов исследования геномных ассоциаций (GWAS), экспрессионных систем, биологических моделей позволили по-новому взглянуть на почечный транспорт мочевой кислоты и его нарушения, имеющие важное патофизиологическое значение. Идентификация уратных транспортеров URAT1 и GLUT9 положила начало разработке идеи уратной транспортной системы проксимальных канальцев почек человека, которая поставила под сомнение правомерность доминировавшей в последние годы четырехкомпонентной модели почечного транспорта урата и привела к появлению концепции мультимолекулярного комплекса, транспортирующего урат, – уратной транспортосомы. Недавние GWAS-исследования позволили выявить около 10 генов, кодирующих соответствующие уратные транспортеры, ассоциированные с сывороточным уровнем мочевой кислоты. Выяснено, что их мутации способны приводить к развитию почечной гиперурикемии. Идентификация уратных транспортеров открывает перспективы создания новых урикозурических препаратов, которые являются потенциальным альтернативным средством для лечения пациентов с рефрактерной подагрой.

В отличие от большинства млекопитающих, человек, как и ряд человекообразных обезьян, имеет высокое содержание мочевой кислоты в крови. Это обусловлено отсутствием у высших гоминид печеночного энзима уриказы (уратоксидазы), потерянной в ходе эволюционного процесса. Если другим млекопитающим уриказа обеспечивает деградацию мочевой кислоты до водорастворимого аллантоина, в организме человека плохо растворимая мочевая кислота является конечным продуктом пуринового метаболизма. Содержание солей мочевой кислоты в сыворотке крови, в основном в виде мононатриевого урата (в дальнейшем – урата), в норме колеблется в диапазоне от 2,5 до 7,0 мг/дл (147–420 мкмоль/л). Уровень урата, превышающий 7,0 мг/дл, считается гиперурикемией.

Хорошо известно, что гиперурикемия способствует возникновению и/или прогрессированию таких заболеваний, как подагра и уратный нефролитиаз. В последние десятилетия выявлена связь повышенной сывороточной концентрации мочевой кислоты (МК) с сердечно-сосудистыми заболеваниями, в первую очередь с артериальной гипертензией, сахарным диабетом, ожирением, метаболическим синдромом, хронической болезнью почек.

Модели почечного транспорта урата (краткий исторический обзор)

Исходя из того что лишь 30% мочевой кислоты выделяется из организма посредством желудочно-кишечного тракта, а 70% – с помощью почечной экскреции, ясно, что развитие гиперурикемии в значительной степени зависит от изменений движения урата в почках [1]. Поэтому проблема почечного транспорта мочевой кислоты продолжает волновать физиологов и клиницистов на протяжении последних 70 лет. Следует признать, что и в наши дни эта проблема далека от разрешения. Пожалуй, наиболее интригующим моментом является уникальность двунаправленного движения мочевой кислоты в почечных канальцах, не имеющая аналогов среди других органических соединений [2].

До 1950-х гг. считалось, что мочевая кислота экскретируется в мочу после фильтрации в почечном клубочке, не подвергаясь транспортным процессам в канальцах. И лишь в 1950 г. в лаборатории выдающегося американского физиолога Роберта Берлинера попытались понять, почему у людей почечный клиренс МК существенно уступает клиренсу креатинина. В опытах на здоровых людях с искусственно вызванной гиперурикемией сравнение клиренсов мочевой кислоты и инулина позволило сделать вывод, согласно которому урат экскретируется с помощью клубочковой фильтрации и активной канальцевой реабсорбции [3, 4]. Однако в том же году в литературе появилось первое сообщение, описавшее пациента с тяжелой гиперурикемией, у которого почечный клиренс МК существенно превосходил клиренс креатинина, указывая на возможность канальцевой секреции урата [5]. Вскоре эти данные были косвенно подтверждены в клинике, когда A.B. Gutman и T.F. Yu объяснили уменьшение глюкозурии у 300 пациентов с подагрой канальцевой секреции МК [6]. Эти результаты позволили приведенным авторам позднее сформулировать известную трехкомпонентную модель почечного транспорта урата, согласно которой мочевая кислота, профильтровавшись в клубочках, подвергается активной реабсорбции, а затем – активной секреции в проксимальных канальцах почек [7].

Однако приведенная трехкомпонентная модель просуществовала лишь десятилетие и в 1970-х гг. сменилась четырехкомпонентной, ставшейся главенствующей вплоть до настоящего времени. В клинических экспериментах с одновременным введением урикозурических (пробенецид, бензбромарон) и антиурикозурических (пиразинамид) препаратов были получены интересные и необъяснимые с точки зрения трехкомпонентной модели результаты. Ключевым моментом этих исследований было не оспаривавшееся в то время представление, согласно которому пиразинамид является селективным ингибитором проксимальной секреции МК. Этот факт был установлен в клиренсных экспериментах на обезьянах [8], и впоследствии «пиразинамидный тест» применялся для оценки уровня канальцевой секреции мочевой кислоты. Использование бензбромарона и пробенецида было основано на их способности селективно ингибировать реабсорбцию просекретировавшегося в более проксимальных отделах урата, т.е. их урикозурический эффект примерно равнялся величине секреции МК, составив около 50% от ее профильтровавшегося количества. Весьма неожиданно в экспериментах на людях урикозурический ответ на введение пробенецида или бензбромарона на фоне предварительного применения пиразинамида оказался значительно слабее, чем ожидалось [9–11]. По мнению цитируемых авторов, эти результаты свидетельствовали о наличии постсекреторной реабсорбции урата, что позволило сформулировать новую четырехкомпонентную модель почечного транспорта мочевой кислоты. Согласно этой модели, почечное движение МК осуществляется следующим образом:

  1. плазменный урат полностью фильтруется в клубочке;
  2. 99% от профильтровавшегося урата затем реабсорбируется в проксимальном канальце;
  3. секреция урата происходит в проксимальном канальце дистальнее места первичной реабсорбции и составляет около 50% фильтрационной нагрузки;
  4. втор...

Список литературы

1. Халфина Т.Н., Максудова А.Н., Абдракипов Р.З. Современный взгляд на патогенетические механизмы гиперурикемии. Практическая медицина. 2012;8–1(64):66–67.

2. Sica D.A., Schoolwerth A.C. Renal handling of organic anions and cations: Excretion of uric acid. In: Brenner B.M. (ed.) The kidney. Philadelphia: W.B. Sanders, 2000. 680–700.

3. Esparza Martín N., García Nieto V. Hypouricemia and tubular transport of uric acid. Nefrologia. 2011;31(1):44–50.

4. Berliner R.W., Hilton J.G., Yu T.F., Kennedy T.J. The renal mechanism for urate excretion in man. J. Clin. Invest. 1950;29(4):396–401.

5. Praetorius E., Kirk J.E. Hypouricemia: With evidence for tubular elimination of uric acid. J. Lab. Clin. Med. 1950;35:865–868.

6. Gutman A.B., Yu T.F. Renal function in gout: with a commentary on the renal regulation of urate excretion, and the role of the kidney in the pathogenesis of gout. Am. J. Med. 1957;23:600–622.

7. Gutman A.B., Yu T.F. A three-component system for regulation of renal excretion of uric acid in man. Trans. Assoc. Am. Physicians. 1961;74:353–365.

8. Fanelli G.M.Jr., Weiner I.M. Pyrazinoate excretion in the chimpanzee: relation to urate disposition and the actions of uricosuric drugs. J. Clin. Invest. 1973;52:1946–1957.

9. Diamond H.S., Paolino J.S. Evidence for a postsecretory reabsorptive site for uric acid in man. J. Clin. Invest. 1973;52(6):1491–1499.

10. Steele T.H., Boner G. Origins of the uricosuric response. J. Clin. Invest. 1973;52:1368–1375.

11. Levinson D.J., Sorensen L.B. Renal handling of uric acid in normal and gouty subjects: evidence for a 4-component system. Ann. Rheum. Dis. 1980;39(2):173–179.

12. Abramson R.G., Lipkowitz M.S. Evolution of the uric acid transport mechanisms in vertebrate kidney. In: Kinne R.K.H. (ed.) Basic principles in transport. Comparative Physiology, Vol. 3. Basel: Karger 1990. P. 115–153.

13. Maesaka J.K., Fishbane S. Regulation of renal urate excretion: a critical review. Am. J. Kidney Dis. 1998;32:917–933.

14. Варшавский Б.Я., Зверев Я.Ф. Почечный транспорт уратов. В кн.: Регуляция функции почек и водно-солевого обмена. Берхин Е.Б. (ред). Барнаул, 1978. С. 24–40.

15. Weiner I.M. Urate transport in the nephron. Am. J. Physiol. 1979;237:F85–F92.

16. Hosoyamada M., Ichida K., Enomoto A., Hosoya T., Endou H. Function and localization of urate transporter 1 in mouse kidney. J. Am. Soc. Nephrol. 2004;15:261–268.

17. Enomoto A., Endou H. Roles of organic anion transporters (OATs) and a urate transporter (URAT1) in the pathophysiology of human disease. Clin. Exp. Nephrol. 2005;9:195–205.

18. So A., Thorens B. Uric acid transport and disease. J. Clin. Invest. 2010;120(6):1791–1799.

19. Anzai N., Jutabha P. Recent advances of renal urate transport: characterization of candidate transporters indicated by genome-wide association studies. Clin. Exp. Nephrol. 2012;16:89–95.

20. Bobulescu I.A., Moe O.W. Renal transport of uric acid: evolving concepts and uncertainties. Adv. Chronic Kidney Dis. 2012;19(6):358–371.

21. Lipkowitz M.S. Regulation of uric acid excretion by the kidney. Curr. Rheumatol. Rep. 2012;14:179–188.

22. George R.L., Keenan R.T. Genetics of hyperuricemia and gout: implications for the present and the future. Curr. Rheumatol. Rep. 2013;15(2):309.

23. Guggino S.E., Aronson P.S. Paradoxical effects of pyrazinoate and nicotinate on urate transport in dog renal microvillus membranes. J. Clin. Invest. 1985;76:543–547.

24. Manganel M., Roch-Ramel F., Murer H. Sodium-pyrazinoate co-transport in rabbit renal brush border membrane vesicles. Am. J. Physiol. 1985;249:F400–F408.

25. Abramson R.G., Levitt M.F. Use of pyrazinamide to assess renal uric acid transport in the rat: a micropuncture study. Am. J. Physiol. 1976;230:1276–1283.

26. Ekaratanawong S., Anzai N., Jutabha P., Miyazaki H., Noshiro R., Takeda M., Kanai Y., Sophasan S., Endou H. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J. Pharmacol. Sci. 2004;94(3):297–304.

27. Кукес В.Г., Сычев Д.А., Казаков Р.Е., Семенов А.В., Игнатьев И.В., Раменская Г.В., Каркищенко В.Н. Значение полиморфизмов генов-транспортеров органических анионов для индивидуализации фармакотерапии. Биомедицина. 2006;2:18–23.

28. Burckhardt G. Drug transport by organic anion transporters (OATs). Pharmacology and Therapeutics. 2012;136(1):106–130.

29. Nigam S.K., Bush K.T., Martovetsky G., Ahn S.Y., Liu H.C., Richard E., Bhatnagar V., Wu W. The organic anion transporter (OAT) family: a systems biology perspective. Physiol. Rev. 2015;95(1):83–123.

30. Enomoto A., Kimura H., Chairoungdua A., Shigeta Y., Jutabha P., Cha S.H., Hosoyamada M., Takeda M., Sekine T., Igarashi T., Matsuo H., Kikuchi Y., Oda T., Ichida K., Hosoya T., Shimokata K., Niwa T., Kanai Y., Endou H. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002;417(6887):447–452.

31. Hediger M.A., Johnson R.J., Miyazaki H., Endou H. Molecular physiology of urate transport. Am. Physiol. Soc. 2005;20(2):125–133.

32. Thangaraju M., Ananth S., Martin P.M., Roon P., Smith S.B., Sterneck E., Prasad P.D., Ganapathy V. c/ebp delta Null mouse as a model for the double knock-out of slc5a8 and slc5a12 in kidney. J. Biol. Chem. 2006;281(37):26769–26773.

33. Dinour D., Gafter U., Knecht A. et al. Novel missense mutations in the Urat1 gene are associated with renal hypouicemia in Iraqui-Jews. J. Am. Soc. Nephrol. 2004;15:89A.

34. Ichida K., Hosoyamada M., Hisatome I., Enomoto A., Hikita M., Endou H., Hosoya T. Clinical and molecular analysis of patients with renal hypouricemia in Japan influence of URAT1 gene on urinary urate excretion. J. Am. Soc. Nephrol. 2004;15:164–173.

35. Komoda F., Sekine T., Inatomi J., Enomoto A., Endou H., Ota T., Matsuyama T., Ogata T., Ikeda M., Awazu M., Muroya K., Kamimaki I., Igarashi T. The W258X mutation in SLC22A12 is the predominant cause of Japanese renal hypouricemia. Pediatr. Nephrol. 2004;19:728–733.

36. Cheong H.I., Kang J.H., Lee J.H., Ha I.S., Kim S., Komoda F., Sekine T., Igarashi T., Choi Y. Mutational analysis of idiopathic renal hypouricemia in Korea. Pediatr. Nephrol. 2005;20:886–890.

37. Ichida K., Hosoyamada M., Kamatani N., Kamitsuji S., Hisatome I., Shibasaki T., Hosoya T. Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese. Clin. Genet. 2008;74:243–251.

38. Kolz M., Johnson T., Sanna S., Teumer A., Vitart V., Perola M., Mangino M., Albrecht E., Wallace C., Farrall M., Johansson A., Nyholt D.R., Aulchenko Y., Beckmann J.S., Bergmann S., Bochud M., Brown M., Campbell H.; EUROSPAN Consortium, Connell J., Dominiczak A., Homuth G., Lamina C., McCarthy M.I.; ENGAGE Consortium, Meitinger T., Mooser V., Munroe P., Nauck M., Peden J., Prokisch H., Salo P., Salomaa V., Samani N.J., Schlessinger D., Uda M., Völker U., Waeber G., Waterworth D., Wang-Sattler R., Wright A.F., Adamski J., Whitfield J.B., Gyllensten U., Wilson J.F., Rudan I., Pramstaller P., Watkins H.; PROCARDIS Consortium, Doering A., Wichmann H.E. KORA Study, Spector T.D., Peltonen L., Völzke H., Nagaraja R., Vollenweider P., Caulfield M.; WTCCC, Illig T., Gieger C. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5(6):e1000504.

39. Kenny E.E., Kim M., Gusev A., Lowe J.K., Salit J., Smith J.G., Kovvali S., Kang H.M., Newton-Cheh C., Daly M.J., Stoffel M., Altshuler D.M., Friedman J.M., Eskin E., Breslow J.L., Pe'er I. Increased power of mixed models facilitates association mapping of 10 loci for metabolic traits in an isolated population. Hum. Mol. Genet. 2011;20(4):827–839.

40. Tin A., Woodward O.M., Kao W.H., Liu C.T., Lu X., Nalls M.A., Shriner D., Semmo M., Akylbekova E.L., Wyatt S.B., Hwang S.J., Yang Q., Zonderman A.B., Adeyemo A.A., Palmer C., Meng Y., Reilly M., Shlipak M.G., Siscovick D., Evans M.K., Rotimi C.N., Flessner M.F., Köttgen M., Cupples L.A., Fox C.S., Köttgen A., CARe and CHARGE Consortia. Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele. Hum. Mol. Genet. 2011;20(20):4056–4068.

41. Li S., Sanna S., Maschio A., Busonero F., Usala G., Mulas A., Lai S., Dei M., Orrù M., Albai G., Bandinelli S., Schlessinger D., Lakatta E., Scuteri A., Najjar S.S., Guralnik J., Naitza S., Crisponi L., Cao A., Abecasis G., Ferrucci L., Uda M., Chen W.M., Nagaraja R. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet. 2007;3:e194.

42. Phay J.E., Hussain H.B., Moley J.F. Cloning and expression analysis of a novel member of the facilitative glucose transporter family, SLC2A9 (GLUT9). Genomics. 2000;66(2):217–220.

43. Anzai N., Ichida K., Jutabha P., Kimura T., Babu E., Jin C.J., Srivastava S., Kitamura K., Hisatome I., Endou H., Sakurai H. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J. Biol. Chem. 2008;283(40):26834–26838.

44. Vitart V., Rudan I., Hayward C., Gray N.K., Floyd J., Palmer C.N., Knott S.A., Kolcic I., Polasek O., Graessler J., Wilson J.F., Marinaki A., Riches P.L., Shu X., Janicijevic B., Smolej-Narancic N., Gorgoni B., Morgan J., Campbell S., Biloglav Z., Barac-Lauc L., Pericic M., Klaric I.M., Zgaga L., Skaric-Juric T., Wild S.H., Richardson W.A., Hohenstein P., Kimber C.H., Tenesa A., Donnelly L.A., Fairbanks L.D., Aringer M., McKeigue P.M., Ralston S.H., Morris A.D., Rudan P., Hastie N.D., Campbell H., Wright A.F. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat. Genet. 2008;40(4):437–442.

45. Joost H.G., Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members. Mol. Membr. Biol. 2001;18(4):247–256.

46. Augustin R., Carayannopoulos M.O., Dowd L.O., Phay J.E., Moley J.F., Moley K.H. Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking. J. Biol. Chem. 2004;279(16):16229–16236.

47. Bibert S., Hess S.K., Firsov D., Thorens B., Geering K., Horisberger J.D., Bonny O. Mouse GLUT9: evidences for a urateuniporter. Am. J. Physiol. Renal Physiol. 2009;297(3):F612–F619.

48. Caulfield M.J., Munroe P.B., O’Neill D., Witkowska K., Charchar F.J., Doblado M., Evans S., Eyheramendy S., Onipinla A., Howard P., Shaw-Hawkins S., Dobson R.J., Wallace C., Newhouse S.J., Brown M., Connell J.M., Dominiczak A., Farrall M., Lathrop G.M., Samani N.J., Kumari M., Marmot M., Brunner E., Chambers J., Elliott P., Kooner J., Laan M., Org E., Veldre G., Viigimaa M., Cappuccio F.P., Ji C., Iacone R., Strazzullo P., Moley K.H., Cheeseman C. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med. 2008;5:e197.

49. Guillam M.T., Burcelin R., Thorens B. Normal hepatic glucose production in the absence of GLUT2 reveals an alternative pathway for glucose release from hepatocytes. Proc. Natl. Acad. Sci. USA. 1998;95(21):12317–12321.

50. Anzai N., Jutabha P., Kimura T., Fukutomi T. Urate transport: relationship with serum urate disorder. Curr. Rheumatol. Rev. 2011;7:123–131.

51. Dinour D., Gray N.K., Ganon L., Knox A.J., Shalev H., Sela B.A., Campbell S., Sawyer L., Shu X., Valsamidou E., Landau D., Wright A.F., Holtzman E.J. Two novel homozygous SLC2A9 mutations cause renal hypouricemia type 2. Nephrol. Dial. Transplant. 2012;27(3):1035–1041.

52. Brandstätter A., Kiechl S., Kollerits B., Hunt S.C., Heid I.M., Coassin S., Willeit J., Adams T.D., Illig T., Hopkins P.N., Kronenberg F. Sex-specific association of the putative fructose transporter SLC2A9 variants with uric acid levels is modified by BMI. Diabetes Care. 2008;31:1662–1667.

53. Dehghan A., Köttgen A., Yang Q., Hwang S.J., Kao W.L., Rivadeneira F., Boerwinkle E., Levy D., Hofman A., Astor B.C., Benjamin E.J., van Duijn C.M., Witteman J.C., Coresh J., Fox C.S. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008;372(9654):1953–1961.

54. Döring A., GiegerC., Mehta D., Gohlke H., Prokisch H., Coassin S., Fischer G., Henke K., Klopp N., Kronenberg F., Paulweber B., Pfeufer A., Rosskopf D., Völzke H., Illig T., Meitinger T., Wichmann H.E., Meisinger C. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Net. Genet. 2008;40:430–436.

55. Stark K., Reinhard W., Neureuther K., Wiedmann S., Sedlacek K., Baessler A., Fischer M., Weber S., Kaess B., Erdmann J., Schunkert H., Hengstenberg C. Association of common polymorphisms in GLUT9 gene with gout but not with coronary artery disease in a large case-control study. PLoS One. 2008;3:e1948.

56. Wallace C., Newhouse S.J., Braund P., Zhang F., Tobin M., Falchi M., Ahmadi K., Dobson R.J., Marçano A.C., Hajat C., Burton P., Deloukas P., Brown M., Connell J.M., Dominiczak A., Lathrop G.M., Webster J., Farrall M., Spector T., Samani N.J., Caulfield M.J., Munroe P.B. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am. J. Hum. Genet. 2008;82:139–149.

57. Hollis-Moffatt J.E., Xu X., Dalbeth N., Merriman M.E., Topless R., Waddell C., Gow P.J., Harrison A.A., Highton J., Jones P.B., Stamp L.K, Merriman T.R. Role of the urate transporter SLC2A9 gene in susceptibility to gout in New Zealand, and Caucasian case-control sample sets. Arthritis Rheum. 2009;60:3485–3492.

58. Tu H.P., Chen C.J., Tovosia S., Ko A.M., Lee C.H., Ou T.T., Lin G.T., Chang S.J., Chiang S.L., Chiang H.C., Chen P.H., Wang S.J., Lai H.M., Ko Y.C. Association of a nonsynonymous variant in SLC2A9 with gouty arthritis and uric acid levels in Han Chinese and Solomon Islanders. Ann. Rheum. Dis. 2010;69:887–890.

59. Matsuo H., Chiba T., Nagamori S., Nakayama A., Domoto H., Phetdee K., Wiriyasermkul P., Kikuchi Y., Oda T., Nishiyama J., Nakamura T., Morimoto Y., Kamakura K., Sakurai Y., Nonoyama S., Kanai Y., Shinomiya N. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am. J. Hum. Genet. 2008;83(6):744–751.

60. Kawamura Y., Matsuo H., Chiba T., Nagamori S., Nakayama A., Inoue H., Utsumi Y., Oda T., Nishiyama J., Kanai Y., Shinomiya N. Pathogenic GLUT9 mutations causing renal hypouricemia type 2 (RHUC2). Nucleosides Nucleotides Nucleic Acids. 2011;30(12):1105–1111.

61. Bahn A., Hagos Y., Reuter S., Balen D., Brzica H., Krick W., Burckhardt B.C., Sabolic I., Burckhardt G. Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13). J. Biol. Chem. 2008;283(24):16332–16341.

62. Eraly S.A., Hamilton B.A., Nigam S.K. Organic anion and cation transporters occur in pairs of similar and similary expressed genes. Biochem. Biophys. Res. Commun. 2003;300(2):333–342.

63. Cha S.H., Sekine T., Kusuhara H., Yu E., Kim J.Y., Kim D.K., Sugiyama Y., Kanai Y., Endou H. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J. Biol. Chem. 2000;275(6):4507–4512.

64. Hagos Y., Stein D., Ugele B., Burckhardt G., Bahn A. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J. Am. Soc. Nephrol. 2007;18(2):430–439.

65. Gopal E., Umapathy N.S., Martin P.M., Ananth S., Gnana-Prakasam J.P., Becker H., Wagner C.A., Ganapathy V., Prasad P.D. Cloning and functional characterization of human SMCT2 (SLC5A12) and expression pattern of the transporter in kidney. Biochem. Biophys. Acta. 2007;1768(11):2690–2697.

66. Ho H.T., Ko B.C., Cheung A.K., Lam A.K., Tam S., Chung S.K., Chung S.S. Generation and characterization of sodium-dicarboxylate cotransporter-deficient mice. Kidney Int. 2007;72(1):63–71.

67. Bakhiya A., Bahn A., Burckhardt G., Wolff N. Human organic anion transporter 3 (hOAT3) can operate as an exchanger and mediate secretory urate flux. Cell. Physiol. Biochem. 2003;13(5):249–256.

68. Ichida K., Hosoyamada M., Kimura H., Takeda M., Utsunomiya Y., Hosoya T., Endou H. Urate transport via human PAH transporter hOAT1 and its gene structure. Kidney Int. 2003;63(1):143–155.

69. Eraly S.A., Vallon V., Rieg T., Gangoiti J.A., Wikoff W.R., Siuzdak G., Barshop B.A., Nigam S.K. Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiol. Genomics. 2008;33(2):180–192.

70. Werner A., Moore M.L., Mantei N., Biber J., Semenza G., Murer H. Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proc. Natl. Acad. Sci. USA. 1991;88(21):9608–9612.

71. Biber J., Hernando N., Forster I., Murer H. Regulation of phosphate transport in proximal tubules. Pflugers Arch. 2009;458(1):39–52.

72. Biber J., Custer M., Werner A., Kaissling B., Murer H. Localization of NaPi-1, a Na/Pi cotransporter, in rabbit kidney proximal tubules. II. Localization by immunohistochemistry. Pflugers Arch. 1993;424(3–4):210–215.

73. Chong S.S., Kristjansson K., Zoghbi H.Y., Hughes M.R. Molecular cloning of the cDNA encoding a human renal sodium phosphate transport protein and its assignment to chromosome 6p21.3-p23. Genomics. 1993;18(2):355–359.

74. Ruddy D.A., Kronmal G.S., Lee V.K., Mintier G.A., Quintana L., Domingo R. Jr., Meyer N.C., Irrinki A., McClelland E.E., Fullan A., Mapa F.A., Moore T., Thomas W., Loeb D.B., Harmon C., Tsuchihashi Z., Wolff R.K., Schatzman R.C., Feder J.N. A 1.1-Mb transcript map of the hereditary hemochromatosis locus. Genome Res. 1997;7(5):441–456.

75. Ishibashi K., Matsuzaki T., Takata K., Imai M. Identification of a new member of type I Na/phosphate co-transporter in the rat kidney. Nephron Physiol. 2003;94(1):10–18.

76. Jutabha P., Anzai N., Kitamura K., Taniguchi A., Kaneko S., Yan K., Yamada H., Shimada H., Kimura T., Katada T., Fukutomi T., Tomita K., Urano W., Yamanaka H., Seki G., Fujita T., Moriyama Y., Yamada A., Uchida S., Wempe M.F., Endou H., Sakurai H. Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate. J. Biol. Chem. 2010;285(45):35123–35132.

77. Iharada M., Miyaji T., Fujimoto T., Hiasa M., Anzai N., Omote H., Moriyama Y. Type 1 sodium-dependent phosphate transporter (SLC17A1 Protein) is a Cl(-) dependent urate exporter. J. Biol. Chem. 2010;285(34):26107–26113.

78. Urano W., Taniguchi A., Anzai N., Inoue E., Kanai Y., Yamanaka M., Endou H., Kamatani N., Yamanaka H. Sodium-dependent phosphate cotransporter type 1 sequence polymorphisms in male patients with gout. Ann. Rheum. Dis. 2010;69(6):1232–1234.

79. Hollis-Moffatt J.E., Phipps-Green A.J., Chapman B., Jones G.T., van Rij A., Gow P.J., Harrison A.A., Highton J., Jones P.B., Montgomery G.W., Stamp L.K., Dalbeth N., Merriman T.R. The renal urate transporter SLC17A1 locus: confirmation of association with gout. Arthritis Res. Ther. 2012;14(2):R92.

80. Doyle L.A., Yang W., Abruzzo L.V., Krogmann T., Gao Y., Rishi A.K., Ross D.D. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA. 1998;95(26):15665–15670.

81. Huls M., Brown C.D., Windass A.S., Sayer R., van den Heuvel J.J., Heemskerk S., Russel F.G., Masereeuw R. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int. 2008;73(2):220–225.

82. Woodward O.M., Köttgen A., Coresh J., Boerwinkle E., Guggino W.B., Köttgen M. I dentification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl. Acad. Sci. USA. 2009;106(25):10338–10342.

83. Matsuo H., Takada T., Ichida K., Nakamura T., Nakayama A., Ikebuchi Y., Ito K., Kusanagi Y., Chiba T., Tadokoro S., Takada Y., Oikawa Y., Inoue H., Suzuki K., Okada R., Nishiyama J., Domoto H., Watanabe S., Fujita M., Morimoto Y., Naito M., Nishio K., Hishida A., Wakai K., Asai Y., Niwa K., Kamakura K., Nonoyama S., Sakurai Y., Hosoya T., Kanai Y., Suzuki H., Hamajima N., Shinomiya N. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci. Transl. Med. 2009;1(5):5ra11.

84. Phipps-Green A.J., Hollis-Moffatt J.E., Dalbeth N., Merriman M.E., Topless R., Gow P.J., Harrison A.A., Highton J., Jones P.B., Stamp L.K., Merriman T.R. A strong role for the ABCG2 gene in susceptibility to gout in New Zealand Pacific Island and Caucasian, but not Maori, case and control sample sets. Hum. Mol. Genet. 2010;19(24):4813–4819.

85. Yamagishi K., Tanigawa T., Kitamura A., Köttgen A., Folsom A.R., Iso H. CIRCS Investigators. The rs2231142 variant of the ABCG2 gene is associated with uric acid levels and gout among Japanese people. Rheumatology (Oxford). 2010;49(8):1461–1465.

86. van Aubel R.A., Smeets P.H., Peters J.G., Bindels R.J., Russel F.G. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J. Am. Soc. Nephrol. 2002;13(3):595–603.

87. Van Aubel R.A., Smeets P.H., van den Heuvel J.J., Russel F.G. Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am. J. Physiol. Renal Physiol. 2005;288(2):F327–F333.

88. El-Sheikh A.A., van den Heuvel J.J., Koenderink J.B., Russel F.G. Effect of hypouricaemic and hyperuricaemic drugs on the renal urate efflux transporter, multidrug resistance protein 4. Br. J. Pharmacol. 2008;155(7):1066–1075.

89. Leal-Pinto E., Cohen B.E., Lipkowitz M.S., Abramson R.G. Functional analysis and molecular model of the human urate transporter/channel, hUAT. Am. J. Physiol. Renal Physiol. 2002;283:F150–F163.

90. Lipkowitz M.S., Leal-Pinto E., Cohen B.E., Abramson R.G. Galectin 9 is the sugar-regulated urate transporter/channel UAT. Glycoconj. J. 2004;19:491–498.

91. Hyink D.P., Rappoport J.Z., Wilson P.D., Abramson R.G. Expression of the urate transporter/channel is developmentally regulated in human kidneys. Am. J. Physiol. Renal Physiol. 2001;281(5):F875–F886.

92. Weinman E.J., Steplock D., Shenolikar S. cAMP-mediated inhibition of the renal brush border membrane Na+-H+ exchanger requires a dissociable phosphoprotein co-factor. J. Clin. Invest. 1993;92:1781–1786.

93. Kocher O., Comella N., Tognazzi K., Brown L.F. Identification and partial characterization of PDZK1: a novel protein containing PDZ interaction domains. Lab. Invest. 1998;78:117–125.

94. Weinman E.J., Steplock D., Shenolikar S. Characterization of a protein co-factor that mediates protein kinase A regulation of the renal brush border membrane Na+-H+ exchanger. J. Clin. Invest. 1995;95:2143–2149.

95. Hung A.Y., Sheng M. PDZ domains: structural modules for protein complex assembly. J. Biol. Chem. 2002;277:5699–5702.

96. Lamprecht G., Seidler U. The emerging role of PDZ adapter proteins for regulation of intestinal ion transport. Am. J. Physiol. Gastrointest. Liver Physiol. 2006;291:G766–G777.

97. Anzai N., Miyazaki H., Noshiro R., Khamdang S., Chairoungdua A., Shin H.J., Enomoto A., Sakamoto S., Hirata T., Tomita K., Kanai Y., Endou H. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. J. Biol. Chem. 2004;279(44):45942–45950.

98. Miyazaki H., Anzai N., Ekaratanawong S., Sakata T., Shin H.J., Jutabha P., Hirata T., He X., Nonoguchi H., Tomita K., Kanai Y., Endou H. Modulation of renal apical organic anion transporter 4 function by two PDZ domain-containing proteins. J. Am. Soc. Nephrol. 2005;16:3498–3506.

99. Jutabha P., Anzai N., Endou H. Interaction of the multivalent PDZ domain protein PDZK1 with type 1 sodium-phosphate cotransporter (NPT1). J. Am. Soc. Nephrol. 2005;16:350A.

100. Sakiyama M., Matsuo H., Shimizu S., Chiba T., Nakayama A., Takada Y., Nakamura T., Takada T., Morita E., Naito M., Wakai K., Inoue H., Tatsukawa S., Sato J., Shimono K., Makino T., Satoh T., Suzuki H., Kanai Y., Hamajima N., Sakurai Y., Ichida K., Shimizu T., Shinomiya N. A common variant leucine-rich repeat-containing 16A (LRRC16A) gene is associated with gout susceptibility. Human Cell. 2014;27(1):1–4.

101. Endou H., Anzai N. Urate transport across the apical membrane of renal proximal tubules. Nucleosides Nucleotides Nucleic Acids. 2008;27:578–584.

Об авторах / Для корреспонденции

Информация об авторах:
Зверев Я.Ф. – профессор кафедры фармакологии ГБОУ ВПО АГМУ МЗ РФ, д.м.н.
E-mail zver@asmu.ru
Брюханов В.М. – профессор, зав. кафедрой фармакологии ГБОУ ВПО АГМУ МЗ РФ, д.м.н.

Полный текст публикаций доступен только подписчикам

Нет комментариев

Комментариев: 0

Вы не можете оставлять комментарии
Пожалуйста, авторизуйтесь